摘要
利用混合单调算子理论及一个新的比较定理讨论了Banach空间积-微分两点边值问题:-u″=f(t,u,Tu,Su),au(0)-bu′(0)=x0,cu(1)+du′(1)=x1.解的存在唯一性,其中a,b,c,d 0,δ=ac+ad+bc,I=[0,1],x0,x1∈E且f∈C[I×E×E×E,E],Tu(t)=∫0tk(t,s)u(s)ds,Su(t)=∫01h(t,s)u(s)ds,t∈I,k∈C(D,R+),D={(t,s)∈I×I,t s},h∈C(I×I,R+),R+=[0,∞).
In this paper, The existence and uniqueness of the solution for the two-point boundary value problem for integro-differential equations in Banach spaces{-u^n=f(t,u,Tu,Su)au(0)-bu'(0)=x0,cu(1)+du'(1)=x1 are discussed by use of mixed monotone operator theory and a new comparision theorem,where a,b,c,d≥0,δ=ac+ad+bc,I=[0,1],x0,x1∈E且f∈C[I×E×E×E,E],Tu(t)=∫0^1k(t,s)u(s)ds,Su(t)=∫0^1h(t,s)u(s)ds,任意t∈I,k∈C(D,R),D={(t,s)∈I×I,t≥s},h∈C(I×I,R.),R=[0,∞).
出处
《商丘师范学院学报》
CAS
2007年第9期27-30,40,共5页
Journal of Shangqiu Normal University
关键词
积-微分方程
两点边值问题
单调迭代方法
比较定理
integro-differential equations
two-point boundary value problem
monotone iterative technique
comparision theorem