期刊文献+

不满足非完整约束的轮式移动机器人鲁棒镇定 被引量:2

Robust Stabilization of Wheeled Mobile Robots Without Satisfying Nonholonomic Constraints
下载PDF
导出
摘要 以unicycle类型轮式移动机器人为对象,在理想非完整约束条件被破坏的条件下,采用横截函数方法和Lyapunov重设计技术设计了鲁棒实际镇定律。构造有界横截函数,再结合轮式移动机器人运动学模型对标准SE(2)群运算的左不变性,对误差系统设计光滑指数镇定律,实现标称系统实际镇定;用Lyapunov重设计方法设计修正项,使得闭环系统对滑动干扰鲁棒。仿真结果验证了所设计控制律的有效性。 Based on the transverse function method and the Lyapunov redesign technique, robust stabilization control law is proposed for the unicycle-type wheeled mobile robots that does not satisfy the ideal " rolling without slipping" constraints, A bounded transverse function is firstly constructed. Then, the left-invariance property of the nominal kinematic model is explored with respect to the standard group operation of the Lie group SE (2). A smooth exponential stabilizing law is derived for the error system, thus the nominal kinematic model is rendered practically stable. An additional control component is constructed to robustify the nominal control laws. Simulation results show the effectiveness of the proposed robust control law.
出处 《控制工程》 CSCD 2007年第5期522-526,共5页 Control Engineering of China
基金 国家自然科学基金重点资助项目(60234030) 国家杰出青年科学基金资助项目(60225015) 高校青年教师奖资助项目
关键词 轮式移动机器人 李群 横截函数 Lyapunov重设计 鲁棒镇定 wheeled mobile robot Lie group transverse function Lyapunov redesign robust stabilization
  • 相关文献

参考文献12

  • 1Kolmanovsky I,McClamroch N H.Developments in nonholonomic control systems[J].IEEE Control System Magazine,1995,15(6):20-36.
  • 2Luca A D,Oriolo G,Vendittelli M.Control of wheeled mobile robots:an experimental overview[A].RAMSETE-Articulated and Mobile Robotics for Services and Technologies[C].London;Springer,2001.
  • 3Canudas de Wit C,Khennouf H.Quasi-continuous stabilizing controllers for nonholonomic systems:design and robustness considerations[C].Rome,Italy:Proc 3rd European Control Conference.1995.
  • 4Dixon W E,Queirroz de M S,Dowson D M,et al.Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modulality[J].IEEE Transactions on Control Systems Technology,2004,12(1):138-147.
  • 5Spivak M.A comprehensive introduction to differential geometry(2nd Edition)[M].Houston:Perish Inc,1979.
  • 6Morin P,Pomet J B,Samson C.Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop[J].SIAM Journal on Control and Optimization,2000,38(1):22-49.
  • 7Morin P,Samson C.Practical stabilization of driftless systems on Lie groups:the transverse function approach[J].IEEE Transactions on Automatic Control,2003,48(9):1496-1508.
  • 8Morin P,Samson C.A characterization of the Lie algebra rank condition by transverse periodic functions[J].SIAM J Control Optim,2002,40(4):1227-1249.
  • 9Morin P,Samson C.Practical and asymptotic stabilization of chained systems by the transverse function control approach[J].SIAM Journal on Control and Optimization,2004,43(1):32-57.
  • 10Khalil H K.Nonlinear systems(2nd Edition)[M].Upper Saddle River:Prentice Hall.1996.

同被引文献9

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部