期刊文献+

两资产亚式彩虹期权的定价研究 被引量:1

Study on two-asset Asian rainbow options pricing
下载PDF
导出
摘要 研究一种奇异路径依赖型期权——两资产亚式彩虹期权的定价问题.基于Black-Scholes期权定价模型的假设条件,利用无套利原理,构建了反映两资产亚式彩虹期权路径依赖特征的多因素定价模型.并结合边界条件,推导了基于两个标的资产的几何亚式彩虹期权的解析定价公式,借助它运用蒙特卡罗模拟法中减少变量技术对两资产算术亚式彩虹期权定价,得到了该期权更精确的估计值. This paper studies the pricing of a kind of exotic path-dependent options, i.e. two-asset Asian Rainbow options. On the basis of the hypotheses of the Black-Scholes option pricing model, using the arbitrage-free principle, we construct the multi-factors pricing model which corresponds to the path-dependent characteristic of Asian Rainbow options on two assets. With the boundary conditions, we derive the analytic pricing formula of the two-asset geometric Asian rainbow options. With the help of the above analytic solutions, we further use the variate reduction technique in the Monte Carlo simulation to evaluate the arithmetic Asian rainbow options with two-asset and obtain accurately simulated option price.
作者 彭斌
出处 《系统工程学报》 CSCD 北大核心 2007年第4期443-448,共6页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(79970115)
关键词 BLACK-SCHOLES期权定价模型 两资产亚式彩虹期权 减少变量技术 Black-Scholes option pricing model two-asset Asian rainbow options variate reduction technique
  • 相关文献

参考文献8

  • 1Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(7):637-654.
  • 2Kenna A G Z,Vost A C F.A pricing method for options based on average asset values[J].Journal of Banking and Finance,1990,(14):113-129.
  • 3Boyle P,Brodie M,Glasserman P.Monte Carlo method for security pricing[J].Journal of Economic Dynamics and Control,1997,(21):1267-1321.
  • 4Dah1 L O,Benth F E.Fast evaluation of the Asian basket option by singular value decomposition[J].Pure Mathematics,2001,3(8):1-30.
  • 5Deelstra G,Linev J,Vanmaele M.Bounds for price of arithmetic basket and Asian basket options[J].Applied Probability Trust,2002,Nov:1-21.
  • 6Stulz R M.Options on the minimum or maximum of two risky assets:Analysis and applications[J].Journal of Financial Economics,1982,(10):161-185.
  • 7John C Hull.Options,Futures and Other Derivatives[M].New York:Prentice Hall,2002.223-226.
  • 8Poll Wilmott,Sam Howynne.The Mathematics of Financial Derivatives[M].England:Cambridge University Press,1995,58-67.

同被引文献13

  • 1徐根新.Vasicek利率模型下欧式看涨外汇期权定价分析[J].同济大学学报(自然科学版),2006,34(4):552-556. 被引量:7
  • 2Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy 1973, 81(7): 637-654.
  • 3Garman M B, Kohlhagen S W. Foreign currency option values[J]. Journal of International Money.
  • 4Shastri K, Tandon K. Valuation of American options on foreign currency[J]. Journal of Banking and Finance, 1987, 11(2): 245-269.
  • 5Grabbe J O. The pricing of call and put options on foreign exchange[J]. Journal of International Money and Finance, 1983, 2(3): 239-253.
  • 6Vasicek O. An equilibrium characterization of term structure[J]. Journal of Financial Economics, 1977, 5(2): 177-188.
  • 7Kemna A G Z, Vorst A C F. A pricing method for options based on average asset values[J]. Journal of Banking and Finance, 1990, 14(1): 113-129.
  • 8Ma J M, Xu C L. An efficient control variate method for pricing variance derivatives[J]. Journal of Computational and Applied Mathematics, 2010, 235(1): 108-119.
  • 9John C, Ingersoll J, Ross S. An intertemporal general equilibrium model of asset prices and a theory of the term structure of interest rates[J]. Econometrica, 1985, 53(2): 363-407.
  • 10Heston S L, Steven L. A closed-form solution for options with stochastic volatility[J]. Review of Financial Studies,1993, 6(2): 327-343.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部