期刊文献+

一种目标级的遥感图像变化检测算法 被引量:6

An Object-level Change Detection Algorithm for Remote Sensing Images
下载PDF
导出
摘要 传统的像素级变化检测方法对图像的配准准确度要求较高,因而在实际运用中受到很多限制.在人造目标检测的基础上,提出了一种目标级的基于局部配准误差补偿的变化检测方法.根据遥感图像中人造目标与自然目标的纹理差异,对图像中的人造目标进行检测和分割,再对分割图像采用提出的算法进行变化检测.实验表明,与传统的像素级变化检测方法相比,本算法具有较高的检测准确度,对配准准确度的要求也有所放宽,并且可以简化变化检测前的辐射校正工作和变化检测后的像素分类的工作. A general drawback to traditional pixel level change detection algorithms lies in their high requirements for image registration accuracy, which leads to many limitations in their practical applications. To overcome such a drawback, an object-level change detection algorithm based on local registration error compensation is proposed. The algorithm is composed of two stages. The first stage aims at detecting and segmenting man made objects according to the texture difference between man made objects and natural ones. The second stage detects changes in the segmented images. Experiments show that, compared with traditional pixePlevel change detection algorithms, the proposed algorithm has higher detection accuracy, and lower requirements for registration accuracy. Moreover, radiation adjustment before change detection and pixel classification after change detection can be simplified.
作者 苏娟 刘代志
出处 《光子学报》 EI CAS CSCD 北大核心 2007年第9期1764-1768,共5页 Acta Photonica Sinica
关键词 变化检测 分形误差测度 配准误差 人造目标 Change detection Fractal error metric Registration error Man-made object
  • 相关文献

参考文献12

  • 1GEOFFREY G H.Object-level change detection in spectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(3):553-561.
  • 2DAI Xiao-long,SIAMAK K.The effects of image misregistration on the accuracy of remotely sensed change detection[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(5):1566-1577.
  • 3RICHARD J R,SRINIVAS A,et al.Image change detection algorithms:a systematic survey[J].IEEE Transactions on Image Processing,2005,14(3):294-307.
  • 4LORENZO B,ROBERTO C.An adaptive approach to reducing registration noise effects in unsupervised change detection[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41 (11):2455-2465.
  • 5LORENZO B,DIEGO F P.Automatic analysis of the difference image for unsupervised change detection[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(3):1171-1182.
  • 6COOPER B E,CHENOWETH D L,et al.Fractal error for detecting man-made features in aerial images[J].Electronics Letters,1994,30(7):554-555.
  • 7TRYGVE R,JOHN H H.Filtering for texture classification:a comparative study[J].IEEE Transactions on PAMI,1999,21 (4):291-310.
  • 8MARINA M,KARL S,HERMANN K.Edge-and region-based segmentation technique for the extraction of large,man-made objects in high-resolution satellite imagery[J].Pattern recognition,2004,37(8):1619-1628.
  • 9OSTU N.A threshold selection method from gray-level histogram[J].IEEE Transactions on SMC,1979,9(2):62-66.
  • 10王萍,苏秀琴,刘雅轩.基于区域合并的动态阈值分割算法[J].光子学报,2004,33(3):378-381. 被引量:20

二级参考文献29

  • 1王广君 田金文.基于四权树结构的图像分割方法.红外与激光工程,2002,(2):12-14.
  • 2.Castleman K R数字图像处理[M].北京:电子工业出版社,1998.390-406.
  • 3Musha T, Okamoto Y. Inverse problems and its solution. Ohm Press,1992.56~63.
  • 4Vincent L,Soille P. Watersheds in digital spaces:an efficient algorithm based on immersion simulations. IEEE Trans, 1991,13(6):583~598.
  • 5Job B T M,Roerdink,Arnold Meijster. The watershed transform: definition, algorithms and parallelization strategies. IOS Press.Fundamental Information,2001,41:187~228.
  • 6Beucher S. The Watershed Transformation Applied To Image Segmentation. France.
  • 7Bieniek A,Moga A. An efficient watershed algorithm based on connected components.Pattern Recognition,2000,33:907~916.
  • 8Singh A. Digital change detection techniques using remotely-sensed data. Int J Remote Sensing,1989,10(8):989~1003.
  • 9Takeuchi S, Kimura H, Mukai Y, et al.A method for detection of annual change using LANDSAT data. Proc 5th SICE(The Society of Instrument and Contral Engineers, Japan)Remote Sensing Symposium 1979,4(5):95~98.
  • 10Yokota T, Matsumoto Y. Seasonal and long-term change detection in land cover from Landsat MSS images. Proc 14th SICE Remote Sensing Symposium,1988,10(3):129~132.

共引文献41

同被引文献56

引证文献6

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部