期刊文献+

三维非负矩阵因子分解代谢组学数据解析

Three dimension non-negative matrix factorization for metabolomic data analysis
原文传递
导出
摘要 多维数据解析方法越来越引起人们的重视,非负矩阵因子分解算法已较广泛地用于图像分析。基于PARAFAC模型,将非负矩阵因子分解算法拓展为三维非负矩阵因子分解算法(three dimension non-negative matrix factorization,NMF3)。其原理简明,算法易于执行。与基于向量计算的其他三维化学计量学算法不同,NMF3基于矩阵计算单个元素,所以不必将三维数据平铺处理,就可直接解析,为三维数据解析研究提供了一种全新的思路和方法。应用NMF3解析模拟三维数据和代谢组学数据,结果令人满意。 Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. It has been widely used in image analysis. The factorization matrices obtained from NMF are non-negative and can be understood and interpreted directly. Based on the PARAFAC model, NMF was extended for three-way data decomposition. The three dimension non-negative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. It has been applied to decomposition of the simulated data array and metabolomic data array, the results were reasonable. The NMF3 algorithm implementation is based on elements but not on vectors. It can decompose a data array directly without unfolding, which is not similar to that the traditional algorithms do. It will give us a novel enlightenment for the decomposition of chemical three dimension data array.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2007年第9期1187-1191,共5页 Computers and Applied Chemistry
基金 山东省优秀中青年科学家科研奖励基金(2005BSlo004) 青岛科技大学科研基金
关键词 三维非负矩阵因子分解 NMF3 代谢组学 数据分析 three dimension non-negative matrix factorization, NMF3, metabolomics, data analysis
  • 相关文献

参考文献21

  • 1Bro R, Parafae. Tutorial and application. Chemometries and Intelligent Laboratory Systems, 1997, 38 : 149 - 171.
  • 2Harshman RA. An index formalism that generalizes the capabilities of matrix notation and algebra to n-way arrays. Journal of Chemometrics, 2001, 15:689-714.
  • 3Andersson CA and Bro R. Improving the speed of multi-way algorithms: Part I. Tucker3. Chemometrics and Intelligent Laboratory Systems, 1998, 42:93 - 103.
  • 4Pravdova V, Estienne F and Walczak B, et al. A robust version of the Tucker3 model. Chemometrics and Intelligent Laboratory Systems, 2001, 59:75 - 88.
  • 5Bro R. Multiway calibration. Multilinear PLS. Journal of Chemometrics, 1996, 10:47 - 61.
  • 6Wold S, Eabensen K and Geladi P. Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 1987,2:37 -52.
  • 7Riu J and Bro R. Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models, Chemometrics and Intelligent Laboratory Systems, 2003, 65:35 -49.
  • 8Fabera NM, Bro R and Hopke PK Recent developments in candecomp/parafac algorithms:a critical review. Chemometrics and Intelligent Laboratory Systems, 2003, 65 : 119 - 137.
  • 9Andersson CA and Bro R. The n-way toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 2000, 52:1 - 4.
  • 10Booksh KS, Lin Z and Wang Z, et al. Extension of trilinear decomposition method with an application to the flow probe sensor. Analytical Chemistry, 1994, 66:2561.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部