期刊文献+

随机二又搜索树上顶点数目的极限定理

原文传递
导出
摘要 主要研究大小为n的随机二叉搜索树上3种不同类型的顶点数目.分别以X_n,Y_n和Z_n表示树中含有0,1,2个子点的顶点的数目.在建立X_n递归关系式的基础上,得到了X_n的期望、方差和大数律,并用压缩法证得了X_n的渐近正态性.对于Y_n和Z_n,也得到了类似的结论.
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第9期1047-1058,共12页 Science in China(Series A)
基金 国家自然科学基金(批准号:10671188) 中国科学院知识创新工程重要方向项目基金(KJCX3-SYW-S02) 中国科学技术大学高水平大学建设基金
  • 相关文献

参考文献26

  • 1Kirschenhofer P. On the height of leaves in binary trees.J Combin Inform Sys Sci, 8:44-60 (1983)
  • 2Panholzer A, Prodinger H. Descendants and ascendants in binary trees. Discrete Math Theor Comput Sci, 1:247-266 (1997)
  • 3Devroye L, Neininger R. Distances and finger search in random binary search trees. SIAM J Comput, 33: 647-658 (2004)
  • 4Mahmoud H, Neininger R. Distribution of distances in random binary search trees. Ann Appl Probab, 13(1): 253-276 (2003)
  • 5Svante J. Left and right pathlenghts in random binary trees. Algorithmica, 46:419-429 (2006)
  • 6Devroye L. Applications of Stein's method in the analysis of random binary search trees. In: Chen L, Barbour A, eds. Stein's Method and Applications. Institute for Mathematical Sciences Lecture Notes Series, vol. 5. Singapore: World Scientific Press, 2005, 247-297
  • 7Drmota M. An analytic approach to the height of binary search trees. J Assoc Comput Mach, 29:89-119 (2001)
  • 8Drmota M. An analytic approach to the height of binary search trees Ⅱ. J Assoc Comput Mach, 50:333-374 (2003)
  • 9Devroye L. A note on the height of binary search trees. J Assoc Comput Mach, 33:489-498 (1986)
  • 10Devroye L. Branching processes in the analysis of the height of trees. Acta Inform, 24:277-298 (1987)

二级参考文献10

  • 1Aldous,D.& Pitman,J.,Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent,Probab.Theory Relat.Fields,2000,118:455-482.
  • 2Devroye,L.,A note on the height of binary search trees,J.Assoc.Comput.Mach.,1986,33:489-498.
  • 3Fill,J.,Mahmoud,H.& Szpankowski,W.,On the distribution for the duration of a randomized leader election algorithm,Ann.Appl.Prob.,1996,6,1260-1283.
  • 4Itoh,Y.& Hosam,M.,One-side variations on interval trees,J.Appl.Prob.,2003,40:654-670.
  • 5Mahmoud,H.,Evolution of Random Seach Trees,John Wiley,New York,1992.
  • 6Mahmoud,H.,One-side variations on binary search trees,Ann.Inst.Statist.Math.,2003,55:885-900.
  • 7Petrov,V.V.,Limit Theorems of Probability Theory,Clarendon Press,Oxford,1995.
  • 8Prodinger,H.,How to select a loser,Discrete Math.,1993,120:149-159.
  • 9Rachev,S.T.,Probability Metrics and the Stability of Stochastic Models,Wiley,New York,1991.
  • 10Sibuya,M.& Itoh,Y.,Random sequential bisection and its associated binary tree,Ann.Inst.Statist.Math.,1987,39:69-84.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部