期刊文献+

多氯联苯污染农田土壤的细菌群落结构差异及其影响因素 被引量:6

VARIATION OF MICROBIAL COMMUNITIES IN PCBS-CONTAMINATED AGRICULTURAL SOILS AND INFLUENCING FACTORS
下载PDF
导出
摘要 应用PCR—DGGE技术分析多氯联苯长期污染农田土壤的细菌群落结构,并主要运用统计学方法探讨了多氯联苯总量和土壤理化因子对细菌群落结构的影响。结果显示:不同水平多氯联苯污染农田土壤中细菌群落结构存在差异,较高水平多氯联苯(64.0~484.5ngg^-1dw)污染土壤的细菌群落结构较为接近;相对于其他土壤理化因子(如有效磷、pH、有机质等),多氯联苯显著影响农田土壤中的细菌群落结构(P〈0.05)。这表明在多氯联苯胁迫下土壤细菌整体群落结构发生改变,提示多氯联苯污染对土壤微生物生态的影响,这可能导致土壤生态环境质量发生变化,是潜在的生态风险因素。 Microbial community composition in PCBs-contaminated paddy field soils was analyzed by PCR-DGGE. Impacts of PCBs and soil physico-chemical properties on soil microbial composition were investigated by canonical correspondence analysis. Results show that soil microbial community composition varied with soil PCBs level, and soils relatively higher in PCBs content (64.0 - 484.5 ng g^-1 dw) were quite close in community structure. Moreover,PCBs contamination affected more significantly (p 〈 0.05) bacterial species composition in comparison with other soil physico-chemical factors such as available phosphorus, pH,organic matter, etc. ,suggesting that under the stress of PCBs, the entire soil microbial community changed. In conclusion, PCBs pose a potential ecological risk to the microbial ecosystem in contaminated paddy soils.
出处 《土壤学报》 CAS CSCD 北大核心 2007年第5期854-859,共6页 Acta Pedologica Sinica
基金 国家自然科学基金重点项目(40432005) 国家重点基础研究发展规划项目(2002CB410809/10) 江苏省自然科学基金(BK2005166)资助
关键词 多氯联苯 农田土壤 微生物群落 PCR—DGGE 典范对应分析 PCBs Agricultural soil Microbial community PCR-DGGE Canonical correspondence analysis
  • 相关文献

参考文献6

二级参考文献77

  • 1LI Yong-Tao,T. BECQUER2,C. QUANTIN,M. BENEDETTI,P. LAVELLE,DAI Jun.Microbial Activity Indices: Sensitive Soil Quality Indicators for Trace Metal Stress[J].Pedosphere,2005,15(4):409-416. 被引量:11
  • 2Giller K E, Witter Ernst, Mcgrath, S P. Toxicity of heavy metal to microorganisms and microbial process in agriculture soils: a review[J]. Soil Biology & Biochemistry, 1998, 30(10-11): 1389-1414.
  • 3Baath E. Effects of heavy metals in soil on microbial processes and populations [ J]. Water, Air & Soil Pollution, 1989, 47: 335-379.
  • 4Kandeler E, Luftenegger G, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities[J]. Biology and Fertility of Soils, 1997, 23(3) :299-306.
  • 5Brookes P C, McGroth S P. Effects of metal toxicity on the size of soil microbial biomass [ J]. Journal of Soil Science, 1984, 35:341-346.
  • 6Fliepbach A, Martens R, Reber H. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge[J].Soil Biology & Biochemistry, 1994, 26:1201-1205.
  • 7Faam D L, Whipps J M, Lynch J M. The use of colony development for the characterization of bacterial communities in soil and on roots[J]. Microbial Ecology, 1993, 27:81-97.
  • 8Knight B P, Mcgrath S P, Chaudri A M. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc[J]. Applied Environmental Microbiology, 1997, 63(1) :39-43.
  • 9Hill G T, Mitkowski N A, Aldrich-Wolfe L, et al. Methods for assessing the composition and diversity of soil microbial communities[J]. Applied Soil Ecology, 2000, 15(1):25-36.
  • 10Thomas L, Peter F D, Werner L. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants[J]. FEMS Microbiology Ecology, 2000, 32(3):241-247.

共引文献313

同被引文献135

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部