期刊文献+

一类基于比率的捕食-食饵系统的参数分析 被引量:1

Parametric Analysis of a Ratio-dependent Predator-prey System
原文传递
导出
摘要 研究一类基于比率和具第Ⅲ类功能性反应的捕食-食饵系统.对系统进行较为完整的参数分析.得到了奇点全局渐近稳定的条件,并且指出,系统的持续生存不仅与参数有关,还与其初值有关. A ratio dependent predator-prey system with Holling type Ⅲ functional response is considered. We present parametric analysis of this system. We give the sufficient condition of the global asymptotic stability for the singular point, and point out that both predator and prey will extinct. Such extinction may occur in two cases. In one case, both species become extinct regardless of the initial data. In other case, both species wilt die out only if the parameter.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第17期98-104,共7页 Mathematics in Practice and Theory
关键词 全局渐近稳定 比率 功能性反应 持续生存 global asymptotic stability ratio-dependent functional response persist existence
  • 相关文献

参考文献6

  • 1王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10
  • 2Berezovskaya F.Karev G,Arditi R.Parametric analysis of the class of Predator-Prey Systems[J].J Math Biol.2001,43:221-246.
  • 3Xiao D,Ruan S.Global dynamics of a ratio-dependent predator-prey system[J].J Math Biol,2001,43:268-290.
  • 4Kuang Y.Beretta E.Global qualitative analysis of a ratio-dependent predator-Prey system[J].J Math Biol.1998.36:389-406.
  • 5Hsu S-B.Hwang T-W.Kuang Y.Global analysis of the Michaelis-Menten type Ratio-dependent predator-prey system[J].J Math Biol,2001.42:489-506.
  • 6Sze-Bi Hsu.Tzy-Wei Huang.Global stability for a class of Predator-Prey systems[J].SIAM Journal on Applied Mathematics.Jun.1995.55(3):763-783.

二级参考文献19

  • 1Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation[J].Mem Ent Sec Can, 1965, 45: 1-60.
  • 2Berryman A A. The origins and evolution of predator-prey theory[J]. Ecology, 1992, 75: 1530-1535.
  • 3Rosenzweig M L. Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time[J]. Science, 1969, 171: 385-387.
  • 4Rosenzweig M L, MacArthur R. Graphical representation and stability conditions of predator-prey interactions[J].AmerNat, 1963, 97: 209-223.
  • 5Arditi R, Ginzburg L R. Coupling in predator-prey dynamics, Ratio-dependence[J]. J Theo Biol, 1989, 139: 311-326.
  • 6Freedman H I. Deterministic Mathematical Models in Population Ecology[M]. New York: Marcel Dekker, 1980.
  • 7Berryman A A. The origins and evolution of predator-prey theory[J]. Ecology, 1992, 75: 1530-1535.
  • 8Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation[J].MemEnt Sec Can, 1965, 45: 1--60.
  • 9May R M. Time delay versus stability in population models with two and three trophic levels[J]. Ecology, 1973, 45315-325.
  • 10Ruan S, Xiao D. Global analysis in a predator-prey system with nonmonotonie functional response[J]. SIAM J Appl Math, 2001, 61, 1445-1472.

共引文献9

同被引文献7

  • 1王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10
  • 2Berezovskaya F, Karev G, Arditi R. Parametric analysis of the ratio-dependent predator-prey model[J]. J Math Biol, 2001, 43 ( 3 ) :221-246.
  • 3XIAO Dong-mei, RUAN Sbi-gui. Global dynamics of a ratio-dependent predator-prey system[ J ]. J Math Biol,2001,43(3) :268-290.
  • 4Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol, 1998,36(4) :389-405.
  • 5Hsu S-B,Hwang T-W, Kuaag Y. Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system[J]. J Math Biol,2001,43(4) :221-246.
  • 6Perko L. Differential Equations and Dynamical Systems[ M] .2nd Ed. Texts in Applied Mathematics 7. Moscow: Springer-Verlag, 1996,344.
  • 7Guckenheimer J, Holmes P. Nonlinear Oscillation, Dgnamical Systems and Bifurcations of Vector Fields [ M ]. New York: Springer- Verlag, 1980.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部