期刊文献+

一类二阶非线性变时滞微分方程的振动准则

Oscillatory Criterion of a Kind of Second-order Nonlinear Variable Delay Differential Equation with Variable Coefficient
原文传递
导出
摘要 研究二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0,对振动因子p(t)变符号的情况讨论了方程的振动性,通过两个已有引理得到了方程振动的两个充分条件.所得结论推广了原有的二阶非线性微分方程与变时滞微分方程当系数不变号时的振动性结论,完善了具变符号振动因子的二阶非线性变时滞微分方程的研究. This paper studies the oscillation of second-order variable delay differential equation x″(t) + p(t)f(x(g(t))) = 0. By using two lemmas, we gain two sufficient conditions for the oscillation of all solutions of the equation with variable coefficient p(t). We generalize the oscillation results of second-order nonlinear differential equation and variable delay differential equation with invariable coefficient. We also develop the oscillation results of second-order nonlinear variable delay differential equation with variable coefficient.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第17期174-178,共5页 Mathematics in Practice and Theory
基金 北京市教委科技基金资助项目(KM200610009004)
关键词 变时滞微分方程 系数变号 振动准则 variable delay differential equation variable coefficient oscillatory criterion
  • 相关文献

参考文献8

二级参考文献13

  • 1傅希林,俞元洪.非线性中立型二阶时滞方程解的振动性[J].数学杂志,1993,13(2):175-181. 被引量:4
  • 2傅希林,俞元洪.非线性二阶中立型微分方程的振动性[J].应用数学与计算数学学报,1994,8(2):21-26. 被引量:13
  • 3[1]Rogovchenko Y. V., Oscillation Criteria for Certain Nonlinear Differential Equations [J], J. Math. Anal.Appl., 1999, 229(2): 399-416.
  • 4[2]Hameclani G. G., Krenz G. S., Oscillation Criteria for Certain Second Order Differential Equations [J], J.Math. Anal. Appl., 1990, 149(1): 271-276.
  • 5[3]Grace S. R., Lalli B. S., An Oscillation Criterion for Certain Second Order Strongly Sublinear Differential Equations [J], J. Math. Anal. Appl., 1987, 123(2): 584-588.
  • 6[4]Philos Ch G., Oscillation Theorems for Linear Differential Equations of Second Order [J], Arch. Math.(Basel), 1989, 53(5): 482-492.
  • 7[5]Erbe L., Oscillation Criteria for Second Order Nonlinear Delay Equations [J], Canad Math. Bull., 1973,16(1): 49-56.
  • 8Li W T. Oscillation of certain second order nonlinear differential equations[J]. J Math Anal Appl. 1998. 217 (1) : 1-14.
  • 9Erbe L H. Zhang B G. Oscillation of discrete analogues of delay equations[J]. Differential Equations. 1989.2(3) : 300-309.
  • 10Kreith K, Ladas G. Allowable delays for positive solutions[J]. Diffussian Process Hiroshima Math J, 1985,15(4) : 437-443.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部