摘要
研究二阶非线性变时滞微分方程x″(t)+p(t)f(x(g(t)))=0,对振动因子p(t)变符号的情况讨论了方程的振动性,通过两个已有引理得到了方程振动的两个充分条件.所得结论推广了原有的二阶非线性微分方程与变时滞微分方程当系数不变号时的振动性结论,完善了具变符号振动因子的二阶非线性变时滞微分方程的研究.
This paper studies the oscillation of second-order variable delay differential equation x″(t) + p(t)f(x(g(t))) = 0. By using two lemmas, we gain two sufficient conditions for the oscillation of all solutions of the equation with variable coefficient p(t). We generalize the oscillation results of second-order nonlinear differential equation and variable delay differential equation with invariable coefficient. We also develop the oscillation results of second-order nonlinear variable delay differential equation with variable coefficient.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第17期174-178,共5页
Mathematics in Practice and Theory
基金
北京市教委科技基金资助项目(KM200610009004)
关键词
变时滞微分方程
系数变号
振动准则
variable delay differential equation
variable coefficient
oscillatory criterion