期刊文献+

支持向量机在液体火箭发动机稳态段故障检测和诊断中的应用 被引量:3

Application of Support Vector Machine in Steady State Fault Detection and Diagnosis of Liquid-propellant Rocket Engine
下载PDF
导出
摘要 将支持向量机方法用于某大型液体火箭发动机稳态试车数据的挖掘,建立了多故障分类器,采用23次试车数据对上述挖掘结果进行了测试,将测试结果与人工神经网络方法等所得结果进行了比较。并利用28类仿真稳态故障数据对该方法进行了进一步验证。结果表明,支持向量机方法是一种可基于小样本的、有效的液体火箭发动机故障检测与诊断方法。 A novel method of fault detection and diagnosis of liquid rocket engine based on support vector machine(SVM) is proposed to solve the problem of deficiency of fault data samples. A multi-fault classifier is constructed. Data got from 23 tests are used to testify obtained models. The results were compared with those of ANN method. 28 kinds of simulated data are also used to verify the performance of SVM method. It shows that the SVM method is an efficient approach based on small samples for the Fault detection and diagnosis of liquid-propellant rocket engine.
出处 《导弹与航天运载技术》 北大核心 2007年第4期54-58,共5页 Missiles and Space Vehicles
基金 国家自然科学基金资助项目(50376073)
关键词 液体火箭发动机 故障检测 故障诊断 数据挖掘 支持向量机 Liquid rocket engine Fault detection Fault diagnosis Data mining Support vector machine
  • 相关文献

参考文献4

二级参考文献44

  • 1[1]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995.
  • 2[2]Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning,1995,20:273-297.
  • 3[4]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2):121-167.
  • 4[5]Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection[A]. Proceedings of IEEE Conference on CVPR'97[C].Puerto Rico,1997.130-136.
  • 5[6]Joachims T. Making Large-Scale SVM Learning Practical[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.
  • 6[7]Platt J C. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines[A]. Advances in Kernel Methods: Support Vector Learning[C].Cambridge, MA: MIT Press,1999.185-208.
  • 7[8]Keerthi S S. Improvements to Platt's SMO Algorithm for SVM Classifier Design[J].Neural Computaion,2001,13(3):637-649.
  • 8[9]Chih Wei Hsu, Chih Jen Lin.A Simple Decomposition Method for Support Vector Machines[J]. Machine Learning, 2002,46 (1):291-314 .
  • 9[10]Jain Xiong Dong, Ching Y S, Adam K. A Fast SVM Training Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2003,17(3):367-384.
  • 10[11]Suykens J A K. Optimal Control By Least Squares Support Vector Machines[J]. Neural Networks, 2001,14(1):23-25.

共引文献41

同被引文献86

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部