期刊文献+

耐超高温连续SiC纤维制备过程中纤维结构和取向演变 被引量:6

Evolutions of Structure and Tropism of Fibers During Preparation of Polymer-derived High-temperature Resistant Continuous SiC Fibers
下载PDF
导出
摘要 以聚铝碳硅烷(PACS)为先驱体,采用先驱体转化技术制备出耐超高温的连续SiC纤维.研究了制备过程中纤维结构和取向的演变及其对纤维性能的影响.研究结果表明,耐超高温连续SiC纤维制备过程中纤维结构的演变随温度变化分为分子间交联(≤600℃)、基本无机化(600~800℃)、完全无机化(800~1300℃)和结晶重排(1300~1800℃)四个阶段;纤维的取向随着结构的演变而改变,连续PACS纤维沿轴向具有的微弱取向,经热分解后演变到1300℃的产物中,1300℃后随着结晶重排的发生,纤维由各向异性转变为各向同性;结构和取向的转变对于纤维性能具有很大的影响. High-temperature resistant continuous SiC fibers were prepared by polymer-derived method using precursor polyaluminocarbosilane(PACS). The evolutions of the fibers structure and tropism during the preparation and its effect on the properties of the fibers were investigated. The results show that the evolutions of structure of continuous cured PACS fibers included four stages : crosslinking among the molecules of the fibers ( ≤600 ℃ ), basically inorganic transformation ( 600--800 ℃ ), completely inorganic transformation ( 800-- 1300 ℃), crystallization and redistribution of the structure (1300--1800 ℃). The tropism of the fibers changed with the evolutions of the structure. Continuous PACS fibers had the weak tropism along the fiber axis and it was evolved to the products prepared at 1300 ℃. The fibers transformed from anisotropic to isotropic state at 1500 ℃. The properties of continuous SiC fibers were affected greatly by the evolutions of the structure and tropism.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第9期1771-1775,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:59972042)资助.
关键词 耐超高温连续SiC纤维 取向 先驱体转化法 聚铝碳硅烷 High-temperature resistant continuous SiC fibers Tropism Polymer-derived method Polyaluminocarbosilane
  • 相关文献

参考文献17

  • 1Johnson D.W.Evans A.G.Goettler R.W.Ceramic Fibers and Coatings:Advanced Materials for the Twenty-first Century[M],Washington D.C.National Academy Press,1998.
  • 2Russell J.D.High-Performance Synthesis Fibers for Composites[M],Washington D.C.National Academy Press,1992.
  • 3Yajima S,Hayashi J,Omori M,et al.Nature[J],1976,262:683-685.
  • 4Sacks M.D.J.Europ.Ceram.Soc.[J],1999,19:2305-2315.
  • 5Clark T.J,Arons R.M,Stamatoff J.B,et al.Ceram.Eng.Sci.[J],1985,6(7/8):576-578.
  • 6Lipowitz J,Bamard T,Bujalski D,et al.Comp.Sci.Technol.[J],1994,51:167-171.
  • 7Ishikawa T,Kohtoku Y,Kumagawa K,et al.Nature[J],1998,391:773-774.
  • 8Cao F,Li X.D,Peng P,et al.J.Mater.Chem.[J],2002,12(3):606-610.
  • 9郑春满,李效东,余煜玺,曹峰.先驱体转化法制备耐高温Si-Al-C-O纤维[J].材料工程,2004,32(12):25-28. 被引量:8
  • 10王应德,冯春祥,宋永才,邹治春,廖杰.碳化硅纤维连续化工艺研究[J].宇航材料工艺,1997,27(2):21-25. 被引量:12

二级参考文献51

  • 1郑春满,李效东,余煜玺,曹峰.先驱体转化法制备耐高温Si-Al-C-O纤维[J].材料工程,2004,32(12):25-28. 被引量:8
  • 2甘治平,官建国.原位诱导生长法制备单分散M型钡铁氧体亚微空心球[J].高等学校化学学报,2005,26(11):1986-1989. 被引量:12
  • 3JOHNSON D W,EVANS A G,GOETTLER R W.Ceramic Fibers and Coatings:Advanced Materials for the Twenty-First Century[M].Washington D C:National Academy Press,1998.1-49.
  • 4YAJIMA S,HAYASHI J,OMORI M,et al.Development of a SiC fibre with high tensile strength[J].Nature,1976,260:683-685.
  • 5MAN T,HECHT N L,CULLUM D E MC,et al.Thermal stability of SiC fibers (Nicalon)[J].J Mater Sci,1984,19:1 191-1 201.
  • 6CLARK T J,MARONS R,STAMATOFF J B,et al.Thermal degradation of Nicalon SiC fiber[J].Ceram Eng Sci Proc,1985,6 (7-8):576-578.
  • 7ISIKAWA T,KOHTOKU Y,KUMAGAWA K,et al.High strength alkali-resistant sintered SiC fiber stable to 2 200 ℃[J].Nature,1998,391:773-774.
  • 8CAO F,KIM D P,LI X D,et al.Synthesis of polyaluminocarbosilane and reaction mechanism study[J].J Appl Polym Sci,2002,85 (13):2 787-2 792.
  • 9DICARLO J A.Creep limitation of current polycrystalline ceramic fibers[J].Compos Sci Technol,1994,51(2):213-222.
  • 10LY H Q,TAYLOR R,DAY R J,et al.Conversion of polycarbosilane (PCS) to SiC-based ceramic,part 1.Characterisation of PCS and curing products[J].J Mater Sci,2001,36:4 037-4 043.

共引文献17

同被引文献147

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部