期刊文献+

基于概率三角模糊数的水资源多属性决策方法研究 被引量:2

Research of multi-attribute decisions-making method of water resources based on probability triangle fuzzy number
下载PDF
导出
摘要 水资源优化配置的决策方案的许多指标和权重往往是定性的,因此如何较合理的处理这些指标和权重是解决优化配置的关键所在。针对定性指标和精确指标混合情况下的水资源多属性决策问题,引入三角模糊数相互比较的可能度概念及模糊比率刻度概念,使定性指标及权重在决策中以三角模糊数形式的规范表示,研究各决策指标在非统一概率分布下的三角模糊数决策矩阵的综合评价方法,使决策评价结果更加合理,切合实际。实例计算表明水资源多属性决策方法简单可行,得到的最优方案与专家们对方案的倾向性意见一致。 Many indexes and weights of the decision making in the water resources optimal distribution are qualitative. Therefore how to process these indexes and weights reasonably is the key to solve this kind of questions. In view of multi-attribute decisions-making question of water resources in the mix situation both of quantitative and precise indexes, this paper introduced the possibility concept by which different triangle fuzzy numbers can be mutually compared and the concept of fuzzy ratio scale. Let the represent quantitative indexes and the weights can be regularly expressed by the triangle fuzzy numbers in the decision-making. Through the research of synthesis appraisal method of the triangle fuzzy number decision-making matrix, under the deci- sional indexes was not unified probability distributions, this paper made the decision-making valuation results more reasonable and fitting the reality. The example calculation indicated that decision-making method in this paper was simple and feasible, the optimal decision scheme obtained was complety suitable to the ideas of the experts.
出处 《水资源与水工程学报》 2007年第4期1-4,共4页 Journal of Water Resources and Water Engineering
基金 河南省高校人才支持计划(2006HANCET-03) 河南省软科学研究(061303200)
关键词 水资源 三角模糊数 概率分布向量 多属性决策 water resources triangle fuzzy number probability distribution vector multi-attribute decisions-making
  • 相关文献

参考文献5

二级参考文献36

  • 1吴江,黄登仕.区间数排序方法研究综述[J].系统工程,2004,22(8):1-4. 被引量:89
  • 2郭春香,郭耀煌.具有区间数的多目标格序决策方法研究[J].预测,2004,23(5):71-73. 被引量:23
  • 3张炯,张敏莉,贾仁甫,朱平.基于模糊数学的房地产估价市场比较法研究[J].扬州大学学报(自然科学版),2005,8(3):31-34. 被引量:13
  • 4吴从忻 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 5Gershon L,Duckstein L,Mc Aniff R.Multi-objective river basin planning with qualitative criteria[J].Water Resources Research,1982,118(2):193-202.
  • 6Zadeh L A.Fuzzy Sets[J].Information and Control,1965,8:338-352.
  • 7Baas S.M,Kwakernaak H.Rating and ranking of multiple-aspect alternatives using fuzzy sets[J].Automatic,1977,13:47-57.
  • 8Yager R R.Ranking fuzzy subsets over the unit interval[C].Proc.1978.CDC,1978:1435-1437.
  • 9Yager R R.On choosing between fuzzy subsets[J].Kybernetes,1980,9:151-154.
  • 10Dubois D,Prade H.Ranking of fuzzy numbers in the setting of possibility theory[J].Information Science,1983,30:183-224.

共引文献45

同被引文献14

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部