期刊文献+

2^*2上三角算子矩阵的谱的填洞问题

The Filling Holes Problems of Operator Spectra of 2^*2 Upper Triangular Operator Matrices
下载PDF
导出
摘要 设Mc=A C0 B∈B(X Y)为定义在Banach空间X Y上的上三角算子矩阵.讨论了Mc的左(右)谱σl(σr),左(右)本性谱σle(σre)和本性谱σe的填洞问题. Let Mc={A C 0 B}∈B(X(+)Y) be an upper triangular operator acting on the Banach space B(X(+)Y) . It studies on the filling holes problems of various special operator spectra of Mc including five cases such as left spectra, right spectra, left essential spectra, right essential speatra and essential spectra.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期6-10,18,共6页 Journal of Fujian Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10471025) 福建省自然科学基金资助项目(2006J0203)
关键词 BANACH空间 算子矩阵 左谱 右谱 本性谱 左本性谱 右本性谱 Banach space operator matrix left spectra right spectra essential spectra left essential spectra right essential spectra
  • 相关文献

参考文献7

  • 1康威 J B.单复变函数[M].吕以辇,张南岳,译.上海:上海科学技术出版社,1985.
  • 2Han J K,Lee H Y,Lee W Y.Invertible completions of 2*2 upper triangular operator matrices[J].PAMS,1999,128:119-123.
  • 3Hwang I S,Lee W Y.The boundedness below of 2*2 upper triangular operator matrices[J].Integr Equ Oper Theory,2001,39:267-276.
  • 4Xiao Hong CAO,Mao Zheng GUO,Bin MENG.Semi-Fredholm Spectrum and Weyl's Theorem for Operator Matrices[J].Acta Mathematica Sinica,English Series,2006,22(1):169-178. 被引量:37
  • 5Barraa M,Boumazgour M.On the perturbations of spectra of upper triangular operator matrices[EB/OL].(2003).http://www.ictp.trieste.itput-off.
  • 6Lee W Y.Weyl spectra of operator matrices[J].PAMS,2000,129:131-138.
  • 7Cao X H,Guo M Z,Meng B.Weyl's theorem for upper triangular operator matrices[J].Linear Algebra and Its Applications,2005,402:61-73.

二级参考文献9

  • 1Du, H. K., Pan, J.: Perturbation of spectrums of 2 × 2 operator matrices. Proc. Amer. Math. Soc., 121,761-766 (1994).
  • 2Han, J. K., Lee, H. Y., Lee, W. Y.: Invertible completions of 2 × 2 upper triangular operator matrices.Proc. Amer. Math. Soc., 128, 119-123 (2000).
  • 3Han, Y. M., Djordjevi6, S. VI: a-Weyl's theorem for operator matrices. Proc. Amer. Math, Soc., 130,715-722 (2001).
  • 4Lee, W. Y.: Weyl spectra of operator matrices. Proc, Amer. Math. Soc., 129, 131-138 (2000).
  • 5Lee, W. Y.: Weyl's theorem for operator matrices. Intege. Equ. Oper. Theory, 32, 319-331 (1998).
  • 6Weyl, H.: Uber beschrankte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo,27, 373-392 (1909).
  • 7Djordjevic, SI V.,Djordjevic, D. S.: Weyl's theorems: continuity of the spectrum and quasihyponormal operators. Acta Sci. Math. (Szeged), 64, 259-269 (1998).
  • 8Rakocevic, V.: Operators obeying a-Weyl's theorem. Rev. Roumaine Math. Pures Appl., 34(10), 915-919(1989).
  • 9Taylor, A. E.: Theorems on ascent, descent, nullity and defect of linear operators. Math. Ann., 168, 18-49(1966).

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部