期刊文献+

基于神经网络和线性像素置换的颜色量化 被引量:1

Color quantization algorithm based on neural network and linear pixel shuffling
下载PDF
导出
摘要 本文提出了一种新的彩色图像量化算法。它是一种基于自组织神经网络和线性像素置换的后聚类算法。线性像素置换是一种均匀选取图像中的像素的方法。根据线性像素置换确定改进的自组织神经网络的初始权重向量和训练样本集。选取部分样本参加训练加快训练过程。实验结果表明,与其它量化优化算法比较,本文提出的算法在量化图像质量和算法效率方面均有明显提高,而且不依赖于算法的初始条件。 In this paper, a novel color quantization algorithm is presented. It is a post-clustering technique, based on Self-Organizing Kohonen Network and Linear Pixel Shuffling (LPS). LPS provides a method for uniformly visiting pixels in an image. The initial weighted vectors and training sets are also determined by LPS. Limited samples are taken in order to speed up the training process of the improved neural network. The influence of different values of sampling rate is discussed. The presented algorithm is compared with other well-known approaches in terms of quantization error, executive time as well as human perception. Experiments show that the proposed algorithm results in a significant improvement of image quality and reduction of the rtmning time without depending on the set of initial conditions
作者 李玉蓉
出处 《光电工程》 EI CAS CSCD 北大核心 2007年第9期124-128,共5页 Opto-Electronic Engineering
关键词 颜色量化 Kohonen自组织神经网络 线性像素置换 color quantization self-organizing neural network linear pixel shuffling
  • 相关文献

参考文献8

  • 1Paul Heckbert. Color image quantization for frame buffer display[J]. ACM, Computer Graphics, 1982, 16(2): 297-304.
  • 2Gerrautz M, Purgathofer W. A simple method for color quantization: Octree quantization[A]. New Trends in Computer Graphics[C]. Berlin: Springer-Verlag, 1988:219-231.
  • 3Anthony Dekker. Kohonen neural networks for optimal color quantization[J]. Network: Computation in Neural Systems, 1994, 5: 351-367.
  • 4Celenk M. A color clustering technique for image segmentation[J]. Computer Vision, Graphics and Image Processing, 1990, 52: 145-170.
  • 5Scheunders P. A comparison of clustering algorithms applied to color image quantization[J]. Pattern Recognition Letters, 1997, 18(11/13): 1379-1384.
  • 6Wan S J, Prusinkewicz P, Wong S K M. Variance-based color image quantization for frame buffer display[J]. Color Research and Application, 1990, 15(1): 52-58.
  • 7Peter G Anderson, Jonathan S Arney, Kevin Ayer. Linear Pixel Shuffling (I): New Paradigms for New Printers[A]. Proceedings of the 16th International Conference on Digital Printing Technologies(NIP16) [C]. Vancouver: The Society for Imaging Science and Technology, 2000: 801-806.
  • 8Maharned G Omran, Andries P Engelbrecht. A color image quantization algorithm based on particle swarm optimization[J]. Informatiea, 2005, 29: 261-269.

同被引文献13

  • 1韩晓微,晏磊,原忠虎,范立南.基于BP神经网络的颜色模糊量化方法[J].系统仿真学报,2006,18(10):3007-3010. 被引量:9
  • 2Hideo Kasuga, Hiroaki Yamamoto, Massyuki Okamoto. Color quantization using the fast k-means algorithm [ J ]. Systems and Computers,2000,31 (8) :33-40.
  • 3Zhou B, Shen J Y, Peng Q. An adjustable algorithm for color quantization [ J ]. Pattern Recognition Letters, 2004, 25 (16) :1787-1797.
  • 4Omran M, Engelbrecht A. A color image quantization algorithm based on particle swarm optimization [ J ]. Infromatica, 2005,29 ( 3 ) :261-269.
  • 5Chao H W,Chung N L,Chaur H H. Sample-size adaptive self-organization map for color images quantization [ J ]. Pattern Recognition Letters ,2007,28 (13) : 1616-1629.
  • 6Gervautz M,Purgathofer W. A simple method for color quantization : Octree quantization [ C ] #Proceedings of Graphics Gems International. San Diego: Academic Press Professional, 1998:219-230.
  • 7Herkbert P. Color image quantization for frame buffer display [ J ]. Computer Raphics, 1982,16 ( 3 ) : 297-304.
  • 8Atsalakis A, Papamarkos N. Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas [ J ]. Engineering Application of Artificial Intelligence ,2006,19 (7) :769-786.
  • 9Kanungo T, Mount D M. An efficient k-means clustering algorithm: Analysis and implementation [ J ]. IEEE Trans. on PAMI,2002,24(7 ) : 881-892.
  • 10Ma W Y, Manjunath S. Edgeflow: A framework for boundary detection and image segmentation [ J ]. IEEE Trans. on Image Processing,2000,9( 8 ) : 1375-1388.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部