期刊文献+

基于大值堆的自调整粗粒度并行遗传算法模型 被引量:1

A Self-Adjust CGGA Model Based on Max-Heap
下载PDF
导出
摘要 一般粗粒度并行遗传算法(CGGA)的性能受诸多因素的影响表现不尽如人意。以降低通信代价为主要目标,受物种金字塔模型的启发,设计了一种双阈值限制下的自调整堆结构,并对其堆调整具体操作进行了改进,以期望改进后算法中种群间的通信代价大幅度降低,优化收敛速度,提高算法效率。通过对遗传算法的几个典型测试函数通信量的分析和实验表明,基于该模型的并行遗传算法在降低通信代价、提高收敛速度、优化最终解方面收效明显。 Common coarse - grained genetic algorithrn(CGGA) has been criticized for many reasons. In this paper, focus on communication costs,gain the idea from creature specices pyramid structure and suggest a heap model limited under two valves expect to significantly reduce the communication costs between two groups. The expectation of migration costs and experiment on typical GA test functions in the last part of this essay all verify that this model could greatly decrease the cost of communication and accelerate the convergence speed.
作者 滕腾 李龙澍
出处 《计算机技术与发展》 2007年第10期105-108,112,共5页 Computer Technology and Development
基金 国家自然科学基金项目(60273043) 安徽省自然科学基金(050420204) 安徽省高校拔尖人才基金(05025102) 安徽省教育厅自然科学研究项目(2006KJ098B)
关键词 并行遗传算法 CGGA 通信代价 堆模型 parallel genetic algorithm CGGA communication cost heap model
  • 相关文献

参考文献9

  • 1Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor, MI: The University of Michigan Press, 1975.
  • 2Pettey C B, Leuze M R,Grefenstette J J.A parallel genetic algorithm[ C].In: Proceedings of the 2nd International Conference on Genetic Algorithms ( ICGA - 2 ). Hillsdale, NJ: [ s. n. ] ,1987:155 - 167.
  • 3Rudolph G. Convergence Analysis of Canonical Genetic Algorithrns[J]. 1EEE Trans. on Neural Network,1994,5(1):96 -101.
  • 4赖鑫生,张明义.基于渗透原理迁移策略的并行遗传算法[J].计算机学报,2005,28(7):1146-1152. 被引量:13
  • 5管宇,徐宝文.基于模式迁移策略的并行遗传算法[J].计算机学报,2003,26(3):294-301. 被引量:18
  • 6Srinvas M, Pamaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm[J]. IEEE Trans on Systerns,Man and Cybernetics, 1994,24(4) :656 - 667.
  • 7谢志文,尹俊勋,金晶.遗传算法的相似性配对方式[J].计算机应用,2005,25(11):2665-2667. 被引量:2
  • 8Li Min- Quan, Kou Ji - Song, Lin Dan,et al. Primary Theory and Application of Genetic - Algorithms[M]. Beijing : Science Press,2002.
  • 9戴晓明,陈昌领,邵惠鹤,Kay Das,程铁鹏,茅雪飞.粗粒度并行遗传算法收敛性分析及优化运算[J].上海交通大学学报,2003,37(4):499-502. 被引量:11

二级参考文献37

  • 1[1]Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor: University of Michigan Press,1975.
  • 2[2]de Jong K A. Analysis of the behavior of a class of genetic adaptive systems[D]. Michigan: University of Michigan, 1975.
  • 3[3]Goldberg D E. Genetic algorithms in search, optimization and machine learning [M]. Reading, MA:Addison-Wesley, 1989.
  • 4[4]Louis S J, Rawlins G J E. Syntactic analysis of convergence in genetic algorithms[A]. Darrell Whitley L eds. Foundations of Genetic Algorithm 2[C]. SanMateo ,Italia, 1993. 141- 151.
  • 5[5]Rudolph G. Convergence analysis of canonical genetic algorithms [J]. IEEE Trans on Nerual Network,1994,5(1):96-101.
  • 6[6]Iosifescu M. Finite markov processes and their appli cations [M]. Chichester: Wiley, 1980.
  • 7ROVITHAKIS GA, MANIADAKIS M, ZERVAKIS M. A hybridneural network/genetic algorithm approach to optimizing feature extraction for signal classification[J]. IEEE Transactions on Evolutionary Computation of Systems, Man and Cybernetics, Part B, 2004,34(1):695 - 703.
  • 8TU ZG, LU Y. A Robust Stochastic Genetic Algorithms (StGA) for Global Numerical Optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(5): 456-470.
  • 9SYSWERDA G. Uniform Crossover in Genetic Algorithms[A]. Proceedings of the 3rd International Conferebce On Genetic Algorithms[C]. Morgan Kaufmann, Los Altos,1989.2-9.
  • 10SYSWERDA G. A Study of Reproduction in Generational and Steady-State Genetic Algorithms[A]. Foundations of Genetic Algorithms[C]. Morgan Kaufmann, 1991.332-349.

共引文献35

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部