期刊文献+

外可平面图的几乎唯一泛圈性

Almost Uniquely Pancyclic Quality of Outplannar Graphs
下载PDF
导出
摘要 设G是阶为n的简单Hamilton图,若存在m(3≤m<n)使对每个l∈{3,4,…,n}-{m},G恰有一个长为l的圈且不含长为m的圈,则称G是几乎唯一泛圈图.用■k(i)表示具有n+k条边且满足一定条件的简单外可平面的H图的集合.文章讨论了■k(3)中图的几乎唯一泛圈性. Let G be a simple Hamilton graph with n vertices. If there exists m (3≤m〈n) such that G contains exactly one cycle of length 1 for every ∫∈{3, 4, ..., n}-(m) and contains no cycle of length m, then G is called almost uniquely pancyclic graph. Let (i)/Гk denote the set of simple outplanar Hamilton graphs with n+k edges and satisfy some certain conditions. In this paper we discuss the graphs in (3)/Гk in its almost uniquely pancyclic quality.
作者 徐莉 秦大康
机构地区 南通大学理学院
出处 《南通大学学报(自然科学版)》 CAS 2007年第3期23-27,40,共6页 Journal of Nantong University(Natural Science Edition) 
关键词 几乎唯一泛圈图 唯一泛圈图 cycle almost uniquely pancyclic graphs uniquely pancyclic graphs
  • 相关文献

参考文献6

  • 1[1]BONDY J A,MURTY U S R.Graph theory with applications[M].New York:Mac.Millian Press,1976.
  • 2[2]SHI Yong-bing.Some theorems of uniqurly pancyclic graph[J].Discrete Math.,1986,59:167-180.
  • 3[3]YAP H P,TEO S K.On uniquely r-pancycli graphs[C]//KOH K M,YAP H Peds.Graphy Theory:Lecture Notes in Mathematics.Berlin:Springer Press,1984,1073:334-335.
  • 4[4]SHI Yong-bing,YAP H P,TEO S K.On uniquely r-pancylie graphs[J].Annals of the New York Academy of Sciences,1959,576:487-499.
  • 5施永兵.一类几乎唯一泛圈图[J].系统科学与数学,2006,26(4):433-439. 被引量:4
  • 6施永兵,徐莉,陈晓卿,王敏.关于几乎唯一泛圈图[J].数学进展,2006,35(5):563-569. 被引量:6

二级参考文献20

  • 1Bondy J A,Murty U S R.Graph Theory with Applications.Macmillan Press,1976.
  • 2Shi Yongbing.On maximum cycle-distributed graphs.Discrete Math.,1988,71:57-71.
  • 3Shi Yongbing.The number of edges in a maximum cycle-distributed graph.Discrete Math.,1992,104:205-209.
  • 4Shi Yongbing.On Simple MCD graphs containing a subgraph homeomorphic to K4.Discrete Math.,1994,126:325-338.
  • 5Lai Chunhui.Graphs without repeated cycle lengths.Australasian J.of Combinatorics,2003,23:101-105.
  • 6Boros E,Caro Y,Füredi A and Yuster B.Covering non-uniforn hypergraphs.J.of Combinatorial Theory B,2001,82:270-284.
  • 7Shi Yongbing.Some theorems of uniquely pancyclic graphs.Discrete Math.,1986,59:167-180.
  • 8Shi Yongbing.The number of cycles in a Hamilton graph.Discrete Math.,1994,133:249-257.
  • 9Bondy J A,Lovasz L.Length of cycles in Halin graphs.J.of Graph Theory,1985,9(3):397-410.
  • 10Malkevitch J.Cycle lengths in polytopal graphs.Lecture Notes in Math.,1978,642:364-370.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部