期刊文献+

基于背景自适应生成的监控图像运动目标分割

MOTION OBJECT SEGMENTATION OF SURVEILLANCE IMAGE BASED ON SELF-ADAPTIVE BACKGROUND GENERATION
下载PDF
导出
摘要 通过插值填充运动目标区域,生成首帧参考背景。背景更新时,结合当前帧和前一帧图像及其参考背景,根据亮度补偿动态生成当前帧参考背景。然后采用减背景方法对目标进行粗提取,再经目标阴影去除和形态学处理后分割出精确的运动目标。实验结果表明,该方法是有效可行的,能达到实时处理的要求,同时对场景光照变化具有较好的自适应性。 The first reference background frame is built by interpolating and filling the motion object regions. When updating the backgrounds, and according to the brightness compensation, the current frame reference background is dynamically generated with the combination of the current frame, the former frame and its reference background. By the way of deleting background, the objects are crudely picked up, and the precise motion objects are segmented after subtracting the object shadows and processing the morphology. Experiment results show that the method is feasible and effective, and it can achieve the real-time processing request. Meanwhile, it has better adaptability to the variety of scene illumination.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第9期51-53,共3页 Computer Applications and Software
基金 山东省科技攻关课题(022090107)
关键词 背景生成 运动目标分割 目标阴影 形态学处理 Background build Motion object segmentation Object shadow Morphologic processing
  • 相关文献

参考文献6

  • 1Rosin P L,Ellis T.Image Difference Threshold Strategies and Shadow Detection[C].Proc.of the 6th British Machine Vision Conference,1994:347-356.
  • 2王成儒,顾广华.一种采用背景统计技术的视频对象分割算法[J].光电工程,2004,31(8):57-60. 被引量:12
  • 3CU CCH IA RA R,GRANA C,PICCARDIM,et al.Improving shadow suppression in moving object detection with HSV color information[A].Proc of IEEE Int'l Conference on Intelligent Transportation Systems[C].Oakland:IEEE,2001:334-339.
  • 4Zoran Zivkovic.Improved Adaptive Gaussian Mixture Model for Background Subtraction[C].In Proc.ICPR,2004.
  • 5Elgammal A,Harwood D,Davis L.Non-parametric Model for Background Subtraction[C].In Proc.6th European Conference of Computer Vision,2000.
  • 6龚天旭,彭嘉雄.基于分水岭变换的彩色图像分割[J].华中科技大学学报(自然科学版),2003,31(9):74-76. 被引量:20

二级参考文献15

  • 1Haralick R M, Shapiro L G. Survey: image segmentation techniques. Comput. Vis. Graph. Image Process.,1985, 29:100-132.
  • 2Chang Y L, Li X. Adaptive image region-growing.IEEE Trans. Image Processing, 1994, 3:868-872.
  • 3Hijjatoleslami S A, Kittler J. Region growing: A new approach. IEEE Trans. Image Processing, 1998, 7:1 079-1 084.
  • 4Adams R, Bischof L. Seeded region growing. IEEE Trans. Pattern Anal. Machine Intell., 1994, 16:641 - 647.
  • 5Shafarenko L, Petrou M. Automatic watershed segmentation of randomly textured color images. IEEE Trans.Image Processing, 1997, 6:1 530-1 538.
  • 6Salembier P, Padas M. Hierarchical morphological segmentation for image sequence coding. IEEE Trans. Image Process., 1994, 3(5) : 639-651.
  • 7Beucher S. Watershed, hierarchical segmentation and waterfall algorithm. In: Serra J, Soille P, eds. Mathematical Morphology and Its Application to Image Processing[s. 1.]: Kluwer Academic, 1994. 69-76.
  • 8Cumani A, Grattoni G, Giuducci A. An edge-based description of color images. Comput. Vis., Graph., Image Process., 1991, 53(1): 313-323.
  • 9Drewniok C. Multi-spectral edge detection: Some experiments on data from Landsat-Tm. Int. J. Remote Sens., 1994, 15(18): 3743-3765.
  • 10HAI Gao, SIU Wang-chi, HOU Chao-huan. Improved Techniques for Automatic Image Segmentation[J].IEEE Transactions On Circuits and Systems for Video Technology, 2001, 11(12): 1273-1280.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部