摘要
目的:提取T1加权MR脑图像中的侧脑室。方法:首先用高斯滤波对原始图像进行平滑,然后利用改进的FastMarching方法对脑图像进行分割。根据T1加权MR脑图像的成像特点并结合区域信息重新定义了Fast Marching方法的速度函数,该速度函数具有良好的抗泄漏能力。结果:对一系列T1加权MR脑图像进行了分割实验,成功提取出了侧脑室。结论:改善了传统Fast Marching方法在弱边界处易泄漏的缺陷,具有更好的分割效果。
Objective:To segment the cerebral lateral ventricle from T1-weighted MR images. Methods:Firstly, the MR images are smoothed by Gaussian filter, and then segmented with improved Fast Marching method. With the help of region information and the characteristies of T1-weighted MR images, a new speed function for Fast marching method was proposed. The new speed function has a higher evolutive velocity in the objective area while it has a slower evolutive velocity rear the objective region edges.Results:In the experiments, the lateral ventricles from a series of T1-weighted MR images were partitioned successful. Conclusion:The results proved that the proposed algorithm gets better outcomes than the common Fast Marching method especially when the MR images have weak edges.
出处
《医学影像学杂志》
2007年第8期864-867,共4页
Journal of Medical Imaging
基金
国家自然科学基金(60575016)资助
关键词
阈值
水平集
快速行进法
图像分割
磁共振成像
Threshold value
Level set
Fast marching
Image segmentation
Magnetic resonance imaging