摘要
设f:[0,1]×R2→R满足Caratheodory,a(.)∈L1[0,1],a(.)≥0∫,0t0a(t)dt-∫1t0a(t)dt≠1,t0∈(0,1),(1-t)e(t)∈L1(0,1).运用Leray-Schauder原理考虑了二阶奇异边值问题:x″(t)=f(t,x(t),x′(t))+e(t),0<t<1x′(0)=0,x(1)=∫0t0a(t)x(t)dt-∫1t0a(t)x(t)dt在C1[0,1)上解的存在性.
Let f: [0,1]×R^2→R be a function satisfying Carathéodory's conditions and ,(1-t)e(t)∈L^1(0,1).Let∫0^t0 α(t)dt-∫t0^1 α(t)dt≠1,t0∈(0,1),α(t)∈L^1[0,1] be given. This paper is concerned with the problem of solvability of a C^1 [0,1 ) solution to the m - point boundary value problem
{x^n (t)=f(t,x(t),x′(t))+e(t),0〈t〈1
x′(0)=0,x(1)=∫0^t0 α(t)x(t)dt-∫t0^1 α(t)x(t)dt
The proof of our main result is based upon the Leray Schauder continuation theorem.
出处
《兰州工业高等专科学校学报》
2007年第3期4-7,共4页
Journal of Lanzhou Higher Polytechnical College
基金
甘肃省教育厅科研项目(0712B-02)