期刊文献+

基于灰色神经网络的烧结碱度预测与仿真 被引量:1

PREDICTION OF R IN SINTER PROCESS BASED ON GREY NEURAL NETWORK ALGEBRA
下载PDF
导出
摘要 建立了应用灰色神经网络对烧机矿化学成分进行预测的有关理论,并在此基础上构造了灰色神经网络模型。该模型中,灰色理论弱化数据序列波动性和神经网络特有的非线性适应性信息处理能力相融合,本模型能在小样本贫信息的条件下对烧结矿碱度做出比较准确的预测。该模型具有预测精度高、所需样本少、计算简便等优点,取得了比较满意的结果。和BP神经网络算法相比,灰色神经网络算法有很大的应用前景和推广价值。 A grey neural network model was proposed on the basis of the models.The fluctuation of data sequence is weakened by the grey theory and the neural network is capable of processing non-linear adaptable information, and the GNN is a combination of those advantages. The results reveal, the alkalinity of sinter can be accurately predicted through this model by reference to small sample and information. It was concluded that the GNN model is effective with the advantages of high precision, less samples required and simple calculation.
作者 宋强 王爱民
出处 《微计算机信息》 北大核心 2007年第28期217-218,275,共3页 Control & Automation
基金 教育部"教学资源库建设"规划项目(200527) 河南省教育厅自然科学研究计划项目(200612001)
关键词 碱度 灰色神经网络 预测 烧结过程 灰色GM(1 1) alkalinity of sinter grey neural network prediction the sintering process grey model
  • 相关文献

参考文献5

二级参考文献20

  • 1王爱民.管理工作的量化方法与计算机处理[M].大连理工大学出版社,1990..
  • 2王爱民.通用量化评测系统[C]..见:信息与系统国际会议论文集[C].大连海运学院出版社,1992..
  • 3王纲书.模糊决策的理论研究与实践[J].殷都学刊,1995,(1):4-9.
  • 4Werbos P J.Beyond regression new tools for prediction and analysis in the behavioral.Sciences,Harvard Univ,1974
  • 5Hecht-Nielsen R.Theory of the Back-Propagation Network[C].In:Proc IEEE Internation Conference on Neural Network ,Washington D G,1989: 593~605
  • 6付凡 张宗麟.故障诊断的神经网络与专家系统方法[J].西北大学学报:自然科学版,2003,146:94-94.
  • 7GOMM J.Online Learning for Fault Classification Using an Adaptive Nemm-Fuz.zy Network[A].Proc of IFAC World Congress,1996.175-180.
  • 8从爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].合肥:中国科学技术大学出版社,2003,5..
  • 9Yin Hongbin,Wong S C,Xu Jianmin,et al.Urban traffic flow prediction using a fuzzy-neural approach [J].Transportation Research Part C,2002(10):85-98.
  • 10Chen Shuyan,Qu Gaofeng,Wang Xinghe,et al.Traffic flow forecasting based on grey neural network model[A].In:Proceedings of the Second International Conference on Machine Learning and Cybernetics [C].Xi'an,2003.2-5,11.

共引文献145

同被引文献2

  • 1Michel Benne ,Brigitte Grondin-Perez,Jean-Daniel Luk and Jean-Pierre Chabriat. Modelling of evaporation and crystallization (Part 2:A new approach using neuralnetwoks)[J]. INT.SUGAR JNL., 1999,VOL.101,NO.1208 p418-422
  • 2C.D.Pschogios and L.H.Ungar Direct and indirect model based control using artificial neural networks [J]. Ind.Eng.Chem.Res. Vol.30,2564-2573,1991

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部