期刊文献+

油气管道漏磁检测缺陷的三维成像技术 被引量:10

3-D imaging technology for determining defect of oil-gas pipeline in magnetic flux leakage testing
下载PDF
导出
摘要 漏磁检测是油气管道常用的无损检测方法,检测的重点是根据测量的漏磁信号重构缺陷的轮廓。提出了基于小波神经网络的三维成像方法,利用图像函数矩阵表达出管道缺陷的三维图像,矩阵元素值对应着缺陷的深度。利用小波神经网络,建立了由缺陷漏磁信号到图像函数矩阵关系的映射。选用的小波函数是墨西哥草帽小波,采用随机梯度下降算法训练。训练样本为三维有限元仿真数据和测量数据。采用训练数据对小波神经网络进行逼近缺陷图像函数矩阵的训练,然后用训练好的小波神经网反演给定数据,重构缺陷图像。实验结果表明,该方法能够实现三维缺陷漏磁检测的成像化及可视化。 The magnetic flux leakage (MFL) testing is commonly used in the nondestructive evaluation (NDE) of oil-gas pipeline. The key element is to reconstruct the defect profile based on the measured MFL signals. A three dimensional imaging technology for defect of pipeline based on a wavelet neural network (WNN) was presented. An image function matrix expressed the 3-D image parameters of defect of pipeline. The matrix elements corresponded to depth of defect in pipeline. The mapping between MFL signal and image function matrix was established by the WNN. The Mexican hat wavelet frame was used as a wavelet function and a stochastic gradient descent algorithm was adopted in the training procedure. In the experiment, the WNN was first trained to approximate the function matrix of defect image using the training data samples from both the simulated data sets for 3-D finite element model and the measured MFL signals. The trained WNN was then applied to inverse the given MFL signals and reconstruct the defect image. The testing results demonstrated that the proposed approach can successfully implement 3 D imaging and visual representation of defect in pipeline.
机构地区 军械工程学院
出处 《石油学报》 EI CAS CSCD 北大核心 2007年第5期146-148,152,共4页 Acta Petrolei Sinica
基金 国家自然科学基金项目(No.50175109)"基于漏磁基波检测的三维图像信息重建原理研究"资助
关键词 油气管道 漏磁检测 缺陷重构 三维成像技术 小波神经网络 随机梯度下降算法 oil-gas pipeline magnetic flux leakage testing defect reconstruction 3 D imaging technology wavelet neural network stochastic gradient descent algorithm
  • 相关文献

参考文献11

  • 1何辅云.采油油管高速探伤技术的研究[J].石油学报,1999,20(1):73-76. 被引量:11
  • 2王长龙,徐章遂,傅君眉,陈鹏.基于小波神经网络的火炮裂纹形状重构[J].兵工学报,2005,26(3):379-382. 被引量:10
  • 3Haueisen J,Unger R,Beuker T,et al.Evaluation of inverse algorithms in the analysis of magnetic flux leakage data[J].IEEE Transactions on Magnetics,2002,38(3):1 481-1 488.
  • 4Chen Zhenmao,Preda G,Mihalache O,et al.Reconstruction of crack shapes from the MFLT signals by using a rapid forward solver and an optimization approach[J].IEEE Transactions on Magnetics,2002,38(2):1 025-1 028.
  • 5Ramuhalli P,Udpa L,Udpa S S.Electromagnetic NDE signal inversion by function-approximation neural networks[J].IEEE Transactions on Magnetics,2002,38(6):3 633-3 642.
  • 6Ramuhalli P,Udpa L,Udpa S S.Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation[J].Journal of Applied Physics,2003,93(10):8 274-8 276.
  • 7Miya K.Recent advancement of electromagnetic nondestructive inspection technology in Japan[J].IEEE Transactions on Magnetics,2002,38(2):321-326.
  • 8魏茂安,靳世久,李莺莺,崔谦.油气管道缺陷二维轮廓重建及处理技术[J].石油学报,2003,24(6):98-101. 被引量:10
  • 9GONZALEZ R C.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2005.
  • 10Zhang Q,Benveniste A.Wavelet networks[J].IEEE Transactions on Neural Networks,1992,3(6):889-898.

二级参考文献16

  • 1何辅云,赖志荣.漏磁NDT原理的研究[J].合肥工业大学学报(自然科学版),1994,17(3):28-33. 被引量:24
  • 2王海民.磁粉探伤[M].北京:机械工业出版社,1987..
  • 3GrayWJohnson 武嘉漱 等译.Labview图形编程[M].北京:北京大学出版社,2002.496-525.
  • 4刘政凯.微型计算机数字图像处理技术[M].合肥:安徽科学技术出版社,1988.213-218.
  • 5王兆华.二位重叠列率数字滤波器[J].电子学报,1985,11(6):13-38.
  • 6何辅云,合肥工业大学学报,1994年,17卷,3期
  • 7王海民,磁粉探伤,1987年
  • 8Zhang Qinghua, Benveniste A. Wavelet networks[ J ]. IEEE Transactions NN, 1992, 3(6) : 889 - 898.
  • 9Haueisen J, Unger R, Beuker T, et al. Evaluation of inverse algorithms in the analysis of magnetic flux leakage data[ J ]. IEEE Transactions on Magnetics, 2002, 38(3) : 1481 - 1488.
  • 10Ramuhalli P, Udpa L, Udpa KS. Electromagnetic NDE signal inversion by function-approximation neural networks [ J ]. IEEE Transactions on Magnetics, 2002, 38(6) : 3633 - 3642.

共引文献73

同被引文献87

引证文献10

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部