期刊文献+

蕴含K_5-Z_5可图序列的刻划 被引量:2

On Potentially K_(1,4)+e -Graphic Sequences
下载PDF
导出
摘要 对于给定的图H,称π是蕴含H可图的,如果π有一个实现包含H作为子图.K k,C k,Pk分别表示k阶完全图,圈长为k的圈和路长为k的路.Z 5是由一个公共顶点的C3和P2组成的图,K 5-Z5表示从5阶完全图中删去Z 5的5条边.Luo Rong[13]考虑了蕴含C k可图序列的刻划问题,并刻划了当k=3,4,5时,蕴含C k的可图序列.此外,Luo等人[14]刻划了蕴含K 4的可图序列.Eschen和Niu[15]刻划了蕴含K 4-e的可图序列.Yin Jianhua等人[20]刻划了当r=2,s=3和r=2,s=4时,蕴含K r,s的可图序列,其中K r,s是r×s完全二部图.Hu Lili等人[3-5]刻划了蕴含K 5-C4,K 5-Z4,K 5-E3的可图序列,徐正华等人[16]刻划了K1,4+e的可图序列.本文刻划了当n≥5时,蕴含K 5-Z5的可图序列. For Given a graph H , a graphic sequence π = (d1,d2,…,dn ) is said to be potentially H graphical if it has a realization containing H as a subgraph. Let Kk , Ck and Pk denote a complete graph on k vertices, a cycle on k vertices and a path on k + 1 vertices, respectively. Let Z5 be a graph obtained by add P2 to C3 and they have a same vertices. Let K5 -Z5 be a graph obtained by delete Z5 to K5 which has 5 vertices and 5 edges. Luo Rong^[13] characterized the potentially Ck -graphic sequences for each k = 3,4,5. Recently, Luo and Warner^[14] characterized the potentially K4 -graphic sequences. Eschen and Niu^[15] characterized the potentially K4 - e- graphic sequences . Yin and Chen^[12] characterized the potentially Kr.s -graphic sequences for r = 2,s = 3 and r = 2, S = 4. Hu and Lai^[3-5] characterize the potentially K 5-C4, K5-Z4 and K5 - E3 -graphic sequences. Xu and Hu^[16] characterize the potentially K1,4 + e -graphic sequences. In this paper, we characterize the potentially K5 - Z5 -graphic sequences.
出处 《漳州师范学院学报(自然科学版)》 2007年第3期20-24,共5页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省自然科学基金资助项目(Z0511034) 漳州师范学院科研项目资助
关键词 度序列 蕴含K5-Z5可图序列 graph degree sequence potentially K5 - Z5 -graphic sequences
  • 相关文献

参考文献4

二级参考文献17

  • 1尹建华,李炯生.The smallest degree sum that yields potentially K_(r,r)-graphic sequences[J].Science China Mathematics,2002,45(6):694-705. 被引量:12
  • 2尹建华.蕴含K_(1,1,3)的正可图序列的最小度和[J].海南大学学报(自然科学版),2004,22(3):200-204. 被引量:3
  • 3Meng-xiao Yin.The Smallest Degree Sum That Yields Potentially Kr+1 - K3-Graphic Sequences[J].Acta Mathematicae Applicatae Sinica,2006,22(3):451-456. 被引量:5
  • 4GOULD R J,JACOBSON M S, LEHEL J.Potentially G-graphical degree sequences[A].ALAVI Y.Combinatorics,Graph Theory,and Algorithms[C].Kalamazoo Michigan:New Issues Press,1999.451-460.
  • 5KLEITMAN D J,WANG D L.Algorithm for constructing graphs and digraphs with given valences and factors[J].Discrete Math,1973,6:79-88.
  • 6ESCHEN E M, NIU J B.On potentially K4-e-graphic sequences[J].Australasian J Combinatorics,2004,29:59-65.
  • 7ERDOS P,JACOBSON M S,LEHEL J.Graphs realizing the same degree sequences and their respective clique numbers[A].ALAVI Y.Graph Theory,Combinatorics and Applications[C].New York:John Wiley & Sons,1991.439-449.
  • 8LI Jiongsheng,SONG Zixia.An extremal problem on the potentially Pk-graphic sequence[J].Discrete Math,2000,212:223-231.
  • 9LI Jiongsheng,SONG Zixia.The smallest degree sum that yields potentially Pk-graphic sequences[J].J Graph Theory,1998,29:63-72.
  • 10YIN Jianhua, LI Jiongsheng.An extremal problem on potentially Kr,s-graphic sequences[J].Discrete Math,2003,260:295-305.

共引文献14

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部