期刊文献+

一类基于模式分类算法的入侵检测系统

One Pattern Recognition Algorithm Applied in Intrusion Detection
下载PDF
导出
摘要 目前,入侵检测技术(IDS)作为网络安全领域研究的焦点,主要分为两种:误用检测和异常检测,误用检测是根据已知的入侵手段建立一个规则库,待检测的信息与库中规则进行匹配达到检测目的.优点是检测结果准确率高,缺点是只能检测到已知入侵类型.异常检测是通过构造正常的用户轮廓来检测用户的行为,优点是可以检测到未知的入侵行为,但是技术不成熟,误报率高.本文尝试通过结合二者的优点,同时创建了描述正常用户行为和异常行为两个向量集,并引入一种广泛应用于图象处理技术中的模式识别算法依据这两个向量集来判断待测用户行为的属性,识别出黑客的入侵行为. At present, Intrusion detection technique has become the focus in the area of network security research. Intrusion detection technique is divided into anomaly detection and misuse detection. Misuse detection refers to intrusions that follow well-defined patterns of attacks that exploit weaknesses in the system. Misuse detection techniques have high detection rate for already known attacks but show poor performance in the presence of a new attack or even a variant of previously known attack.. Anomaly detection is an effort to recognize unusual behavior through a profile describing normal behavioral patterns. This measure can discriminate the unknown methods of intrusion but the technique is not mature and the rate of false positives is high. This paper creates two vector-sets through combining the advantages of the two measures. One describes the behavior of normal users and the other describes that of unusual users, and then introduces a pattern recognition algorithm which is used in image processing technique to judge the behavioral attribute of users to be detected.
作者 周豫苹 陈东
出处 《漳州师范学院学报(自然科学版)》 2007年第3期25-29,共5页 Journal of ZhangZhou Teachers College(Natural Science)
基金 福建省教育厅科技基金资助项目(JA05300)
关键词 模式识别 入侵检测 近邻法 intrusion detection pattern recognition neighbor algorithm IDS
  • 相关文献

参考文献6

  • 1中国互联网络消息中心.中国互联网络发展状况统计报告.http://www.cnnic.gov.cn/develst/2002-1/doc2002-1.zip,2002.
  • 2吴焱等译.入侵者检测[M].北京:电子工业出版社,1999.
  • 3Rebecca Bace,Peter Mell.Intrusion detection systems[J].NIST Special Publication on Intrusion Detection Systems,National Institute of Standards and Technology,2000.
  • 4赵畅,杨冬青,唐世渭.Web日志序列模式挖掘[J].计算机应用,2000,20(9):13-16. 被引量:6
  • 5连一峰,戴英侠,王航.基于模式挖掘的用户行为异常检测[J].计算机学报,2002,25(3):325-330. 被引量:85
  • 6Dit-van Yeung and Calvin Chow.Patzen-Windows Network Intrusion Detectors[Z],IEEE,2001 composition;optimal approximation.

二级参考文献8

  • 1[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 2[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132
  • 3[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999
  • 4[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 5[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994
  • 6[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994
  • 7[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883
  • 8Zaiane R,ProceedingsofAdvancesinDigitalLibrariesConference(ADL′ 98),1998年,19页

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部