期刊文献+

基于概率神经网络的产品质量预测方法研究 被引量:1

A Study of the Methods for Prediction of Product Quality Based on Probabilistic Neural Networks
下载PDF
导出
摘要 对通过正交试验法采集样本数据、采用概率神经网络(PNN)对产品质量进行预测的方法进行研究,并将预测结果与反向传播神经网络(BP)预测结果进行比较。结果表明,在利用正交试验法采集的训练样本数据分别训练PNN和BP网络后发现,概率神经网络的预测准确度远远大于反向传播神经网络,显示了概率神经网络在模式识别领域的优势。 In this paper, both back-propagation neural networks(BPNN) and probabilistic neural networks(PNN) are applied to prediction of product quality, and the simulated results show that when the samples training BPNN and PNN are filtered by orthogonal analysis, the success rate of PNN is much higher than that of BPNN. The superiority of PNN is presented in the pattern recognotion.
出处 《苏州科技学院学报(自然科学版)》 CAS 2007年第3期35-40,共6页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
关键词 正交试验 概率神经网络 质量预测 orthogonal analysis probabilistic neural networks prediction of quality
  • 相关文献

参考文献5

  • 1Zhu Da Qi,Xu Zhen Ping,Yu Sheng Lin,et al. The studies of analog circuit fault diagnosis based multi-sensors neural network data fusion technology[J]. International Journal on Dynamics of Continuous, Discrete and Impulse Systems, 2003,10 (3) : 1560-1563.
  • 2Chen S B ,Wu L,Wang Q L. Self-learning fuzzy neural networks for control of uncertain systems with time delays[J]. IEEE Trans Systems:Man and Cybernetics,1997,27 ( 1 ) : 142-148.
  • 3Narendrak,Parthassarthyk. Identification and control of dynamical systems using neural network[J]. IEEE Transactions on Neural Network,1990, 1 (1):4-27.
  • 4Wasserman P D. Advanced methods in neural computing[M]. New York:Van Nostrand Reinhold, 1993:35-55.
  • 5周斌,李玉梅,志一.神经网络内燃机排放模型学习样本的选定[J].西南交通大学学报,2002,37(6):659-663. 被引量:12

二级参考文献3

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部