期刊文献+

基于改进蚁群算法的结构形状优化 被引量:13

Structural Shape Optimization Based on an Improved Ant Colony Algorithm
下载PDF
导出
摘要 对TACO算法进行了改进,引入最大最小蚁群算法,并提出正实数编码方法和添加常数项的信息素更新技术,以增大算法搜索范围,简化搜索过程,降低挥发系数、信息素上下限等参数和优化函数值对算法的影响程度,改善算法的性能,提高算法的普遍适应性,并通过3个函数的优化求解,证明了其有效性。对于目标函数为隐式的复杂结构优化问题,提出将改进的蚁群算法与有限元方法相结合的方法,发展用于航空发动机涡轮盘的结构形状优化分析,结果表明所提出的方法是成功的。 An improved ant colony algorithm is developed based on TACO. MAX-MIN ant system is introduced. A new method of positive-real-number coding is put forward for enlarging search range and simplifying search process. In order to reduce the influence of the evaporation coefficients, the most and least value of pheromone and the value of optimized function, a new technology of constant-pheromone update is put forward. Thus the algorithmic performance and universality are improved. Through optimizing the solutions of three fanctions, their validity is proved. A new method of combining the improved ant colony algorithm and FEM is presented for the complicated structure whose objective function can't be showed by formula directly. The method is applied to the shape optimization of turbine disk. The results show that the method of combining the improved ant colony algorithm and FEM is successful.
出处 《航空学报》 EI CAS CSCD 北大核心 2007年第5期1110-1115,共6页 Acta Aeronautica et Astronautica Sinica
关键词 结构优化 形状优化 蚁群算法 TACO 有限元方法 structural optimization shape optimization ant colony algorithm TACO FEM
  • 相关文献

参考文献9

  • 1Dorigo M,Gambarbella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans actions on Evolutionary Computation,1997,1(1):53-66.
  • 2Talbi E G,Roux O,Fonlupt C.Parallel ant colonies for the quadratic assignment problem[J].Future Generation Computer Systems,2001,17(4):441-449.
  • 3Ahn S H,Lee S G,Chung T C.Modified ant colony system for coloring graphs[C]∥Proceedings of the 2003 Joint Conference of the 4th International Conference on Information,Communications and Signal Processing and the 4th Pacific Rim Conference on Mutimedia,2003,3:1849-1853.
  • 4Montemanni R,Gambarbella L M,Rizzoli A E,et al.Ant colony system for a dynamic vehicle routing problem[J].Journal of Combinatorial Optimization,2005,10(4):327-343.
  • 5李智,谢兆鸿,秦建华.蚁群算法在天然气输送管道优化设计中的应用[J].天然气工业,2005,25(9):104-106. 被引量:5
  • 6Karaboga N,Kalinli A,Karaboga D.Designing digital IIR filters using ant colony optimization algorithm[J].Engineering Application of Artifical Intelligence.2004,2(17):301-309.
  • 7陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 8Thomas S,Hoos H H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8):889-914.
  • 9李俭.涡轮盘结构设计方法研究[D].南京:南京航空航天大学,2005.

二级参考文献8

  • 1Macro Dorigo, Gianni Di Caro, Luca M Gambardella. Ant algorithms for discrete optimization[J]. Artificial Life,1999,5(3):137-172.
  • 2Dorigo M, Bocabeau E, Theraola G. Ant algorithms and stigmergy. Future Generation Computer System, 2000;16(5): 851-871.
  • 3Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem. IEEE Trans on Knowledge and Data Engineering, 1999; 1(5): 769-778.
  • 4Colorni A, Dorigo M, Maniezzo V, Trbian M. Ant sys tem for job-shop scheduling. Belgian Joumal Operations Research Statistic Computation Science, 1994; 34 ( 1 ): 39-53.
  • 5姚光镇.输气管道设计与管理[M].石油大学出版社(东营),1989..
  • 6马良.来自昆虫世界的寻优策略——蚂蚁算法[J].自然杂志,1999,21(3):161-163. 被引量:89
  • 7魏平,熊伟清.用于一般函数优化的蚁群算法[J].宁波大学学报(理工版),2001,14(4):52-55. 被引量:64
  • 8王艳峰,沈祖培.输气管道优化设计新模型[J].油气储运,2004,23(4):9-12. 被引量:8

共引文献70

同被引文献158

引证文献13

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部