期刊文献+

一氧化氮改善铁胁迫玉米光合组织结构及其活性 被引量:26

Nitric oxide improves photosynthetic structure and activity in iron-deficient maize
下载PDF
导出
摘要 一氧化氮(NO)影响植物生长发育过程及其机制是近年来的研究热点,在植物生长发育的多个层面起着重要的作用。以硝普钠(SNP)为一氧化氮发生剂,液体培养20 d龄的玉米幼苗叶片为实验材料进行研究,结果表明,NO可完全逆转玉米幼苗由缺铁引起的脉间失绿现象,极显著地提高叶片叶绿素含量。电镜观察结果证实,NO促进了玉米叶片叶肉细胞和维管束鞘细胞中叶绿体的发育,叶绿体数量增多且体积增大,基质片层和基粒数量明显增多且结构完好。同时,NO促进了缺铁玉米类囊体膜色素蛋白复合体的装配并显著提高了光合链的电子传递速率,使叶片光合活性得到极显著增加。 Nitric oxide (NO) plays an important role in growth and development of plants. In this study, we used Sodium Nitroprusside (SNP) as NO donor to examine the positive effect of NO on photosynthetic structure and its activity in irondeficient maize grown in nutrient solution for 20 days. The results showed that NO could completely reverse the interveinal chlorosis induced by iron deficiency and increase chlorophyll content in the leaves of maize seedlings. Electro microscope analysis showed that NO promoted the chloroplast development, as indicated by increased number and size of chloroplast in both the mesophyll cell and bundle sheath cell of the leaves, and well-developed stroma lamellae and grana as well as increased numbers. Further studies showed that the assembly of protein complexes of thylakoid membranes was significantly promoted and the electron transfer rates in thylakoids were enhanced by NO treatment, so the photosynthetic activity of leaves was obviously increased.
出处 《植物营养与肥料学报》 CAS CSCD 北大核心 2007年第5期809-815,共7页 Journal of Plant Nutrition and Fertilizers
关键词 光合 铁胁迫 一氧化氮 玉米 photosynthesis iron stress nitric oxide maize (Zea mays L. )
  • 相关文献

参考文献17

  • 1Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants[J]. Planta, 2000, 210: 215-221.
  • 2Leshem Y Y, Haramaty E. Plant aging : The emission of NO and ethylene and the effect of NO-releasing compounds on growth of pea ( Pisum sativum) foliage[J]. J. Plant Physiol., 1996, 148: 258-263.
  • 3Gouvea C M C P, Souza J F, Magalhes C A N, Martins I S. NO^- -releasing substances that induce growth elongation in maize root segments [J]. Plant Growth Reg. 1997, 21 : 183-187.
  • 4Graziano M, Beligni M V, Lamattina L. Nitric oxide improves internal iron availability in plants [J]. Plant Physiol., 2002, 130: 1852- 1859.
  • 5Kim S, Ponka P. Role of nitric oxide in cellular iron metabolism [J]. Biometals, 2003, 6: 125-135.
  • 6Terry N, Abadia J. Function of iron in chloroplasts [J].J. Plant Nutr. , 1986, 9: 609--646.
  • 7Sandmann G, Richard M. Iron-sulfur centers and activities of the photosynthetic electrontransport chain in iron-deficient cultures of the blue-green algaaphanocapsa [J]. Plant Physiol., 1983, 73: 724- 728.
  • 8Hulsebosch R J, Hoff A J, Shuvalov V A. Influence of KF, DCMU and removal of Ca^2+ on the high spin EPR signal of the Cytochrome b-559 heme Fe(Ⅲ) ligated by OH^- in chloroplast[J]. Biochem. Biophys. Acta., 1996,1277: 103-106.
  • 9姜闯道,高辉远,邹琦.缺铁使大豆叶片激发能的耗散增加[J].植物生理与分子生物学学报,2002,28(2):127-132. 被引量:26
  • 10Lichtenthaler H K, Wellburn A R. Determinations of total caroteniods and chlorophyll a and b of leaf extracts in different solvents [ J ]. Biochem. Soc. Trans, 1983, 603: 591-592.

二级参考文献34

  • 1杜林方,林宏辉,潘用华,梁厚果.一种用于色素蛋白分离的新凝胶系统[J].生物化学与生物物理进展,1995,22(3):268-272. 被引量:9
  • 2[1]Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24: 1-15
  • 3[2]Briantais JM, Vernotte C, Picaud M, Krause GH (1980). Chlorophyll fluorescence as a probe for the determination of the photo-induced proton gradient in isolated chloroplasts. Biochim Biophys Acta, 591: 198-202
  • 4[3]Demmig-Adams B (1990). Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochim Biophys Acta, 1020: 1-24
  • 5[4]Demmig-Adams B, Adams WW III (1996). Using chlorophyll fluorescence to assess the fration of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant, 98: 253-264
  • 6[5]Frank H, Cua A, Chynwat V, Yooung A, Gosztola D, Wasielewaki MR(1994). Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res, 41: 389-395
  • 7[6]Gilmore AM(1997). Mechanistic aspects of xanthophyll cycle-dependent photoprotection in higher plant chloroplasts and leaves. Physiol Plant, 99: 197-209
  • 8[7]Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991). Control of the light-harvesting function of chloroplast membranes by aggregation of the LHC II chlorophyll-protein function. FEBS Lett, 292:1-4
  • 9[8]Hulsebosch RJ, Hoff AJ, Shuvalov VA (1996). Influence of KF, DCMU and removal of Ca2+ on the high-spin EPR signal of the cytochrome b-559 heme Fe (III) ligated by OH- in chloroplasts. Biochim Biophys Acta, 1277: 103-106
  • 10[9]Morales F, Abadia A, Abadia J (1998). Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol, 25: 403-412

共引文献46

同被引文献555

引证文献26

二级引证文献304

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部