期刊文献+

基于前向和后向扩散的图像增强算法的改进 被引量:2

Improvement of Image Enhancement based on FAB Diffusion
下载PDF
导出
摘要 图像去噪和增强是图像处理和计算机视觉领域中的基本问题,而偏微分方程已经广泛应用于模糊图像的复原。针对P-M方法和原FAB方法的不足,通过区分图像的平坦区和边界区,综合这两种方法得出了新的扩散系数方程,并通过有限差分法将对应的偏微分方程离散化后得到了它的数值解。这种改进的各向异性的扩散方法,在平滑图像的同时能够保持和增强边界,对实际图像的滤波结果表明了该算法是有效的。 Image denoising and enhancement are fundamental problems in the field of image processing and computer vision, and Partial Differential Equations (PDE) have been wildly used to restore noisy blurred images. Aimed at the defects of both the P-M diffusion and the FAB diffusion, the two algorithms are combined to produce a new equation of the diffusion coefficient, by distinguishing between the homogeneous parts and the edges. An efficient, fast numerical solution to the new PDE' s is found by careful selection of finite differences which propose a discrete algorithm. Images are smoothed while still retaining and enhancing edges by the improved anisotropic diffusion method, and the corresponding filter implementation on a real image demonstrates the efficiency of the scheme.
作者 朱正煌 邱晓晖 ZHU Zheng-huang, QIU Xiao-hui (Dept. of Communication and Information Engineering, Nanjing University of Posts & Telecommunications, Nan.jing 210003, China)
出处 《电脑知识与技术》 2007年第8期817-818,827,共3页 Computer Knowledge and Technology
关键词 图像增强 前向和后向扩散 自适应图像去噪 Image enhancement forward-and-backward diffusion adaptive denoising
  • 相关文献

同被引文献8

  • 1郝玉峰,袁春伟.基于各向异性逆扩散方程的指纹图像锐化去噪方法[J].数据采集与处理,2005,20(3):258-262. 被引量:6
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion [C] //Proceedings of IEEE Workshop Computer Vision, Miami, 1987:16-27.
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithm [J]. Physica D, 1992, 60(2) : 259-268.
  • 4Chen Y M, Vemuri B C, Wang L. Image denoising and segmentation via nonlinear diffusion [J]. Computers and Mathematics with Applications, 2000, 39(5/6):131-149.
  • 5Gilboa G, Sochen N, Zeevi Y Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising [J]. IEEE Transactions on Image Process, 2002, 11(7):689-703.
  • 6Coifman R R, Sowa A. New methods of controlled total variation reduction for digital functions [J]. SIAM Journal on Numerical Analysis, 2001, 39(2):480-498.
  • 7Fu S J, Ruan Q Q, Wang W Q, et al. A feature-dependent fuzzy bidirectional flow for adaptive image sharpening [J]. Neurocomputing, 2007, 70(4/6): 883-895.
  • 8http://www, brsbox, com/filebox/down/fc/56eeb93c4edla6764a71600bc2ec79e5.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部