期刊文献+

基于快速独立分量分析的多分辨率遥感图像融合算法 被引量:6

The Fusion Arithmetic of Multi-Resolution Remote Sense Image Based on M-FastICA
下载PDF
导出
摘要 独立分量分析作为盲源信号分离的一种有效的方法在许多方面获得成功应用。讨论了独立分量分析的基本原理、目标函数选择和算法,并在此基础上,对快速独立分析算法FastICA的核心迭代过程进行改进,得到M-FastICA算法,改进算法减少了独立分量分析的迭代次数,从而提高了算法的收敛速度。最后将M-FastICA算法应用到遥感图像的融合上,实验结果表明,改进算法在融合效果相当的前提下,收敛速度更快。 Independent Component Analysis (ICA) is an effective approach to the separation of blind signal, and has attracted broad attention and has been successfully used in many fields. The fundamental, target functions and practical algorithm of Independent Component Analysis are discussed. Then, by modifying the performance of FastICA algorithm are merged into one iteration of M-FastICA. The M-Fas- tICA algorithm achieves the correspondent effect of FastICA. So the convergence of ICA will be accelerated. Finally, M-FastICA is applied to images fusion. The experiment results show that the modified algorithm reduces iterations with the correspondent fusion performance.
作者 孙俊平 刘扬
出处 《中国电子科学研究院学报》 2007年第3期228-233,共6页 Journal of China Academy of Electronics and Information Technology
关键词 独立分量分析 FASTICA M-FastICA 图像融合 ICA FastICA M-FastICA image fusion
  • 相关文献

参考文献10

  • 1[3]张孝灿,黄智才,赵元洪.遥感数字图像处理[M].浙江:浙江大学出版社,1997.
  • 2[4]WANG F J,et al.Fuzzy Supervised Classification of Remote Sensing Images[J].IEEE Trans.on GIS,1990,28(2).
  • 3[7]COMON P.Independent Component Analysis,A new Concept?[J].Signal Processing,1994,36:287-314.
  • 4[8]Cardoso J F.Blind Signal Separation:Statistical Principles[J].Proceedings of the IEEE.Special Issue on Blind Identification and Estimation,1998,9(10):2 009-2 025.
  • 5杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 6[10]HYVAERINEN A.Survey on Independent Component Analysis[J],Neural Computing Surveys,1999,2:94-128.
  • 7[11]EHLERS F,SCHUSTER H G.Blind Separation of Convolutive Mixtures and an Application in Automatic Speech Recognition in a Noisy Environment[J].IEEE Transactions on Signal Processing,1997,45(10):2 608-2 612.
  • 8[12]HYV(a)RINEN A.Fast and Robust Fixed-point Algorithms for Independent Component Analysis[J].IEEE Transactions on Neural Networks,1999,8(3):622-634.
  • 9[13]HYV(a)RINEN A,AERKKI OJA.A Fast Fixed-point Algorithms for Independent Component Analysis[J].Neural Computation.1997,9(7):1 483-1 492.
  • 10[15]蒋长然.科学计算和C程序集[M].合肥:中国科学技术大学出版社,1998.

二级参考文献10

  • 1Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
  • 2Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998
  • 3Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998
  • 4Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999
  • 5Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998
  • 6Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994
  • 7Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999
  • 8Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996
  • 9Comon P.Independent component analysis:A new concept ?[].Signal Processing.1994
  • 10Hyvarinen A,Oja E.A fast fixed-point algorithm for independent component analysis[].Neural Computation.1997

共引文献57

同被引文献58

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部