摘要
The normally centered electron beam and non-centered electron beam welding of TiAl to TC4 was investigated in order to analyze the electron beam weldability between TiAl/TC4 dissimilar materials. Macroscopic cold crack easily occurred near TiAl substrate in the joints. The optimal tensile strength was related to the welding heat input. The weld structures were composed of bulky columnar grains and equiaxed grains. The isolated phases consisted of large quantities of α2 -Ti3Al phase, small quantity of B2 phase, γ-TiAl phase and YAl2 phase. Insufficient melting of the base metal occurred in the weld when the beam position leaned to the TC4 side. The tensile strength could be improved when the deflection was limited in the optimum range. Otherwise, non-fusion zone was easily generated in the weld, which led to the low tensile strength.
The normally centered electron beam and non-centered electron beam welding of TiAl to TC4 was investigated in order to analyze the electron beam weldability between TiAl/TC4 dissimilar materials. Macroscopic cold crack easily occurred near TiAl substrate in the joints. The optimal tensile strength was related to the welding heat input. The weld structures were composed of bulky columnar grains and equiaxed grains. The isolated phases consisted of large quantities of α2 -Ti3Al phase, small quantity of B2 phase, γ-TiAl phase and YAl2 phase. Insufficient melting of the base metal occurred in the weld when the beam position leaned to the TC4 side. The tensile strength could be improved when the deflection was limited in the optimum range. Otherwise, non-fusion zone was easily generated in the weld, which led to the low tensile strength.