摘要
The boundary element theory together with the optimization method is used to calculate the driving voltage weighting vector of a conformal array of underwater acoustic projecting transducers to obtain a low-sidelobe beampattern. At first, the relationship between the acoustic radiated field and the vibra- tion velocity of the array is formulated from the boundary element equation when the boundary im- pedance of the array baffle is specified. Then, the mutual impedance matrix of the array is calculated, and the relationship between the driving voltage and the vibration velocity of the transducers is pre- sented based on the equivalent circuit principle. At last, the driving voltage weighting vector of the array is calculated through an optimization method to obtain a low-sidelobe projecting beampattern. Computer simulation is conducted for a 14-element conformal array. An experiment has been carried out to measure the radiation directivity of the array in an anechoic water tank. The calculated and the experimental results show that the proposed method accounts for the acoustic effect of the baffle and the mutual interactions among transducers successfully and obtain a low-sidelobe projecting beam- pattern, and at the same time provide the largest amplitude of pressure in the axial direction when the maximum amplitude of the driving voltage weighting vectors keeps unchanged.
The boundary element theory together with the optimization method is used to calculate the driving voltage weighting vector of a conformal array of underwater acoustic projecting transducers to obtain a low-sidelobe beampattern. At first, the relationship between the acoustic radiated field and the vibration velocity of the array is formulated from the boundary element equation when the boundary impedance of the array baffle is specified. Then, the mutual impedance matrix of the array is calculated, and the relationship between the driving voltage and the vibration velocity of the transducers is presented based on the equivalent circuit principle. At last, the driving voltage weighting vector of the array is calculated through an optimization method to obtain a low-sidelobe projecting beampattern. Computer simulation is conducted for a 14-element conformal array. An experiment has been carried out to measure the radiation directivity of the array in an anechoic water tank. The calculated and the experimental results show that the proposed method accounts for the acoustic effect of the baffle and the mutual interactions among transducers successfully and obtain a low-sidelobe projecting beampattern, and at the same time provide the largest amplitude of pressure in the axial direction when the maximum amplitude of the driving voltage weighting vectors keeps unchanged.
关键词
变换器
共形天线阵
边界元理论
最优化法
transducer, conformal array, low-sidelobe beampattern, boundary element, optimization