期刊文献+

复合矩阵的Lwner偏序与特征值不等式

Lwner partial order and eigenvalue inequalities for compound matrices
下载PDF
导出
摘要 讨论了存在Lwner偏序的两矩阵的k级复合矩阵的关系,并将复合矩阵与广义Schur补结合起来,研究矩阵广义Schur补的复合矩阵与复合矩阵广义Schur补之间的Lwner偏序,得到了Ck[(A*BA)/α]≤[Ck(A/α)]*Ck[B(β)′]Ck(A/α)等结果,并给出相关的特征值与奇异值不等式,推广和改进了近期的相关结果. The Loewner partial order for compound matrices are considered. Combing generalized Schur complements with compound matrices, the Loewner partial order for compound matices of generalized Schur complements is studied. Some inequalities, such as Ck [ ( A^* BA )/α ]≤[ Ck ( A/α ) ]^* Ck [ B (β′) ] Ck (A/α ) are obtained. Several eigenvalue inequalities of compound matrices are also offered, which generalize some recent results.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期13-15,共3页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60574075)
关键词 复合矩阵 广义SCHUR补 Loewner偏序 MOORE-PENROSE广义逆 特征值 compound matrix generalized Schur complement Loewner partial order Moore-Penrose generalized inverse eigenvalue
  • 相关文献

参考文献5

二级参考文献9

  • 1普罗斯库烈柯夫 N B.线性代数习题集[M].北京:人民教育出版社,1981..
  • 2Pugh C C, Robinson C. The C' closing lemma including Hamiltonions [J]. Ergod. Th. & Dynam.Sys. ,1983,(3): 261-313.
  • 3James S. Muldowney Compound Matrices and Ordinary differential equations [J]. Journal of Mathematics, 1990.20(4) : 119-239.
  • 4Liu Jianzhou,Linear Algebra Appl,1997年,256卷,123页
  • 5Albert A. Conditions for positive and nonnegative definiteness in terms of pseudoinverse[J]. SIAM Journal of Applied Mathematics, 1969,17: 434-440.
  • 6Zhang Fuzhen. Matrix theory: Basic results and techniques[M]. New York: Springer-Verlag, 1999.
  • 7Liu Jianzhou, Wang Jian. Some inequalities for Schur complements[J ]. Linear Algebra and It's Application,1999, 293: 233-241.
  • 8Thomas L Markham, Ronald L Smith. A Schur complement inequality for certain P-matrices [ J ]. Linear Algebra and It's Application, 1998, 281: 33-41.
  • 9王伯英,张秀平.广义Schur补的L■wner偏序和特征值不等式[J].北京师范大学学报(自然科学版),1998,34(4):441-444. 被引量:3

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部