期刊文献+

带有Poisson跳的股票价格模型的欧式双向期权定价 被引量:5

Pricing of Bi-direction European options on stocks driven by Poisson jump diffusion process
下载PDF
导出
摘要 假定股票价格过程为遵循带非时齐Poisson跳跃的扩散过程,在股票预期收益率、波动率和无风险利率均为时间函数的条件下,利用公平保费原则和价格过程的实际概率测度的保险精算定价方法,得到了有红利支付的欧式双向期权的定价公式. Under the assumptions that stock price process is driven by non-homogeneous Poisson jumpdiffusion process, the expected rate, volatility and risk-less rate are functions of time, using the method of insurance actuary pricing by physical probabilistic measure of pricing process and the principle of fair premium, some pricing formulas of Bi-direction European options considering the price of stock dividend-payment are obtained.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第3期16-19,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(40271037)
关键词 Poisson跳-扩散过程 保险精算定价 欧式双向期权 红利 随机微分方程 Poisson jump-diffusion process insurance actuary pricing European hi-direction option dividend stochastic differential equation
  • 相关文献

参考文献8

二级参考文献31

  • 1约翰郝尔 张陶伟译.期权、期货和衍生证券[M].北京:华夏出版社,1997.178~179.
  • 2Blacd F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973;81(3) :637 - 654.
  • 3Lo A W, Mackinlary A C. Stock market prices do not follow random walks: evidence from a simple specification test[ J]. Review of Financial Studies, 1988 ; 1:41 - 66.
  • 4Knut K, AASE. Contingent claims valuation when the security price is combination of an its process and a random point process[J]. Stochastic processes and their Applications, 1988 ;28(2) :185 -220.
  • 5Merton M C. Continuous-Time finance[ M]. Cambridge M A: Blackwell Publishers, 1990.
  • 6Martin Schweizer. Option heading for semi-martingales[J]. Stochastic Processes and Their Application, 1991 ;37(3) :339 - 360.
  • 7Chan T. Pricing contingent claims on stocks driven by Levy processes[ J ]. Annals of Appl Prob, 1999;9 (2) :504- 528.
  • 8Kallsen Jan. Optimal portfolios for exponential Levy processes [ J ]. Math Meth Oper Res, 2000 ; 51 (3) : 357 - 374.
  • 9Jean Luc Prigent. Option pricing with a general marked point process[J]. Mathematics of Operations Research,2001 ;26(1) :50 - 66.
  • 10Bladt M, Rydberg T H. An actuartial approach to option pricing under the physical measure and without market assumptions[ J]. Insurance: Mathematics and Economics, 1998 ;22 ( 1 ) :65 - 73.

共引文献78

同被引文献34

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部