期刊文献+

基于虚载荷变量的无网格法形状优化的研究

A STUDY ON MESHLESS SHAPE OPTIMIZATION BASED ON FICTITIOUS VARIABLES
下载PDF
导出
摘要 将选择施加在"虚结构"控制点上的虚载荷作为形状优化的设计变量,并将它与无网格Galerkin法相结合来开展结构形状优化研究,采用罚函数法来施加边界条件,通过直接微分法建立了结构形状优化的离散型灵敏度分析算法,利用无网格法研究了节点坐标关于设计变量导数的计算。所提出的算法简单明了,它不仅解决了网格的畸变问题,而且简化了优化模型和迭代流程,并可使结构的受力特性得到进一步的改善。最后用2个工程实例验证了所建立的算法,并得到了形状优化结果。 The fictitious loads applying at certain control nodes on an auxiliary structure are chosen as the design variables of shape optimization, and structural shape optimization is studied by integrating fictitious variables with the element-free Galerkin method in this paper. The essential boundary condition is imposed by employing a penalty method. Using the direct differential method, the discrete-based numerical method for sensitivity analysis is derived. The derivative of nodal coordinates with respect to the design variables is discussed by means of meshless method. The presented algorithms of shape optimization are easy to understand. The distortion of mesh is avoided, and the optimal model and the process of iteration are simplified, so that the loading characteristic of structures can be at best status. Finally two engineering examples are presented to testify the algorithm proposed, and the optimal shapes of structure are obtained.
出处 《工程力学》 EI CSCD 北大核心 2007年第9期26-30,36,共6页 Engineering Mechanics
基金 国家自然科学基金资助项目(50475143) 高等学校博士学科点专项科研基金资助课题(20040530001) 国家重点基础研究专项经费资助(2005CB321701) 湖南省教育厅资助科研项目(04C654) 湖南省重点学科建设项目资助
关键词 形状优化 无网格GALERKIN法 灵敏度分析 虚载荷变量 罚函数法 shape optimization element-free Galerkin method sensitivity analysis fictitious variables penalty method
  • 相关文献

参考文献12

  • 1Raphael T H,Grandhi V R.Structural shape optimization:a survey[J].Computer methods in Applied Mechanics and Engineering,1986,57(1):91-106.
  • 2畔上秀幸.域最適化問題の一解法[J].日本機械学会論文集 A編,1994,60(10):1479-1486.
  • 3Belegundu A D,Rajan S D.A shape optimization approach based on natural design variables and shape functions[J].Computer Methods in Applied Mechanics and Engineering,1988,66(1):87-106.
  • 4龚曙光,黄云清,谢桂兰,邱爱红.基于虚荷载变量的形状优化和灵敏度分析[J].计算力学学报,2005,22(2):183-188. 被引量:7
  • 5Bennett J A,Bokin M E.Structural shape optimization with geometric description and adaptive refinement[J].AIAA Journal,1985,23(4):458-464.
  • 6Bokin M E,Bennett J A.Shape optimization of three-dimension folded plate structures[J].AIAA Journal,1985,23(11):1804-1810.
  • 7Belytschko T,Lu Y Y,Gu L.Element-free Galerkin method[J].International Journal of Numerical Methods in Engineering,1994,37(1):229-256.
  • 8Kim N H,Choi K K,Botkin M E.Numerical method for shape optimization using meshfree method[J].Structure Multidiscipline Optimization,2003,24(2):418-429.
  • 9Bobaru F,Mukherjee S.Shape sensitivity analysis and shape optimization in planar elasticity using the element-free Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,2001,190(32):4319-4337.
  • 10Lacroix D,Bouillard Ph.Improved sensitivity analysis by a coupled FE-EFG method[J].Computer & Structures,2003,81(26):2431-2439.

二级参考文献20

  • 1刘洪秋,夏人伟.一种新的形状灵敏度分析方法——具有两类变量的伴随方程法[J].计算结构力学及其应用,1993,10(1):7-14. 被引量:9
  • 2Erik Steen Kristensen, Niels Flemming Madsen. On the optimum shape of fillet in plates subjected to multiple in-plane loading case[J]. International Journal for Numerical Methods in Engineering, 1976,10:1007-1019.
  • 3Kegl M. Shape optimal design of structure: an efficient shape representation concept[J]. International Journal for Numerical Methods in Engineering, 2000,49:1571-1588.
  • 4Francavilla A,Ramakrishnan C V,Zienkiewicz O C. Optimization of shape to minimize stress con-centration[J]. Journal of Strain Analysis,1975,10(2):63-70.
  • 5Raphael T H, Grandhi V R. Structural shape opti-mization:a survey[J]. Computer Methods in Applied Mechanics and Engineering, 1986,57:91-106.
  • 6Ding Yunliang. Shape optimization of structures: a literature survey[J]. Computers & Structures, 1986,24(6):985-1004.
  • 7Hsu Yehliang. Review of structure shape optimiza-tion[J]. Computers in Industry, 1994,25(1):3-13.
  • 8Zienkiewicz O C, Compbell J S. Shape Optimization Structural and Sequential Linear Programming[A]. Optimum Structural Design[C]. Wiley, New York, 1973,109-126.
  • 9Braibant V, Fleury C. Shape optimal design using B-splines[J]. Computer Methods in Applied Mechanics and Engineering,1984,44:247-267.
  • 10Iman M H. Three-dimension shape optimization[J]. International Journal for Numerical Methods in Engineering,1982,18:661-673.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部