期刊文献+

微型管中液滴流动的三维数值模拟

NUMERICAL SIMULATION OF DROPLET FLOW IN A THREE DIMENSIONAL MICROFLUIDIC DEVICES
下载PDF
导出
摘要 对于微型设备中的低雷诺数流动,毛细力和黏性力起主导作用.应用相场方法,引入自由能泛函,研究了二相流体在微型管中流动问题及表面浸润现象,并给出了微型管中二相流体的无量纲输运方程.针对方形微管道,利用差分法给出了输运方程的数值求解方法.最后,模拟了方形直管中的液滴流动和变形的过程,并给出了液滴前后压力差与其它主要物理参数之间的变化关系.结果表明,压力差随液滴半径增大而增加,而随毛细管系数的增大而减小. For low Reynolds number flow in a micro-fluidic device, the capillary and viscous stresses are more important than the inertial forces, as is characteristic of the micro-fluidic devices. Based on the free energy function, a phase-field method is applied for the two-phase flow in a micro-fluidic device and the interaction of the fluid components with a wall. The transport equations of dimensionless form for the two-phase flow are obtained. To solve the transport equations for a micro-fluidic square pipe, a numerical method is proposed using the finite difference m^thod. The numerical simulation of the flow and the deformation of a droplet in a cubic pipe is carried out, and the effects of the capillary number and the drop radius on the deformation and the additional pressure drop ahead of and behind the droplet are studied. The simulations show that the additional pressure drop increases with the droplet size, and decreases with the capillary number.
出处 《力学与实践》 CSCD 北大核心 2007年第2期31-33,39,共4页 Mechanics in Engineering
基金 联合利华国际合作项目资助.
关键词 相场方法 毛细管系数 表面张力 二相流体 液滴变形 phase field method, capillary number, surface tension, binary fluid, droplet deformation
  • 相关文献

参考文献11

  • 1Knight JB,Vishwanath A,et al.Hydrodynamic focusing on a silicon chip:Mixing nanoliters in microseconds.Phys Rev Lett,1998,80:3863~3866
  • 2Baroud CN,Okkels F,Brody JP,et al.Reaction-diffusion dynamics:Confrontation between theory and experiment in a microfluidic reactor.Phys Rev E,2003,67:060104/1-4
  • 3Anna S,Bontoux N,Stone HA.Formation of dispersions using "flow focusing" in microchannels.Appl Phys Lett,2003,82:364~366
  • 4Link DR,Anna SL,Weitz DA,et al.Geometrically mediated breakup of drops in microfluidic devices.Phys Rev Lett,2004,92:054503-1/4
  • 5Gan'an-Calvo AM,Gordillo JM.Perfectly monodisperse microbubbling by capillary flow focusing.Phys Rev Lett,2001,87:274501/1-4
  • 6Thorsen T,Roberts RW,Arnold FH,et al.Dynamic pattern formation in a vesicle-generating microfluidic device.Phys Rev Lett,2001,86:4163-6
  • 7Dreyfus R,Tabeling P,Willaime H.Ordered and disordered patterns in two-phase flows in microchannels.Phys Rev Lett,2003,90:144505/1-4
  • 8Kuksenok O,Jasnow D,Yeomans J,et al.Periodic droplet formation in chemically patterned microchannels.Phys Rev Lett,2003,91:108303/1-4
  • 9Stone HA.Dynamics of drop deformation and breakup in viscous fluids.Annu Rev Fluid Mech,1994,26:65~102
  • 10Taylor GI.The viscosity of a fluid containing small drops of another fluid.Proc.R.Soc.London,Ser.A,1932,138:41~48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部