期刊文献+

Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles 被引量:6

Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles
下载PDF
导出
摘要 Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with Xco below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g · mi^-1, however, the Ce- HAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when Xco was above 0.08, and the antibacterial ability gets better with the increase Of Xce, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries. Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with Xco below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g · mi^-1, however, the Ce- HAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when Xco was above 0.08, and the antibacterial ability gets better with the increase Of Xce, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第4期452-456,共5页 稀土学报(英文版)
关键词 sol-gel-supercritical fluid drying cerium-substituted hydroxyapatite antibacterial property NANOPARTICLE rare earths sol-gel-supercritical fluid drying cerium-substituted hydroxyapatite antibacterial property nanoparticle rare earths
  • 相关文献

参考文献10

二级参考文献108

共引文献127

同被引文献55

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部