期刊文献+

交换群上HOPF路余代数的结构分析 被引量:2

Construction Classification of Hopf Path Coalgebras over Diherdral Group D_2
下载PDF
导出
摘要 设K是域,运用类似凯莱图的Hopf箭向,在交换群D2上的分歧系统中,有2个元素非零和3个元素非零时,给出了KD2在Hopf双模KQ1上的作用,并得到了路余代数KQc的分次Hopf子代数的结构. Using Hopf quivers which are analogues to Cayley graphs, the action of group algebra KD2 on Hopf bimoudule KQ1 is given, where K is a field. There is the subhopfalgebras of graded Hopf algebra structures on a path coalgebra KQ^c when D2 is an abelian group and two or three elements are nonzero natural numbers in the RSC of D2 .
机构地区 南通大学理学院
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2007年第3期11-14,共4页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10471121) 南通大学自然科学研究课题(05Z006)
关键词 箭图 Hopf双模 quiver Hopf bimodule module
  • 相关文献

参考文献10

  • 1CIBILS C.A quiver quantum group[J].Comm Math Phys,1993,157(1):459-477.
  • 2CHEN X W,HUANG H L,YE Y,et al.Monomial Hopf algebras[J].J Alg,2004,275(1):212-232.
  • 3CIBILS C,ROSSO M.Algebras des chemins quantiques[J].Adv Math,1997,125(2):171-199.
  • 4GREEN E L,SOLBERG O.Basic Hopf algebras and quantum groups[J].Math Z,1998,299(4):45-76.
  • 5CHIN W,MONTGOMERY S.Basic coalgebras[J].AMS/IP Stud Adv Math,1997,4:41-47.
  • 6CIBILS C,ROSSO M.Hopf quivers[J].J Alg,2002,254(2):241-251.
  • 7吴美云.交换群上Hopf路余代数的结构分类(Ⅲ)[J].曲阜师范大学学报(自然科学版),2007,33(1):13-16. 被引量:2
  • 8AUSLANDER M,REITRN I,SMAL S O.Representation theory of artin algebras[M].Cambridge:Cambridge University Press,1995.
  • 9MONTGOMERY S.Hopf algebras and their actions on rings[M].Washington:American Mathematical Society,1993.
  • 10ZHANG S,ZHANG Y,CHEN H X.Classification of pointed quivers Hopf algebras[J].e-print,arXiv:math04/10150.

二级参考文献10

  • 1Cibils C, Rosso M. Hopf quivers[J]. J Alg, 2002, 254(2):241-251.
  • 2Cibils C, Rosso M. Algebras des ehemins quantiques[J]. Adv Math, 1997,125(2),171-199.
  • 3Majid S. Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicross product construction[J]. J Alg, 1990,130(1):17-64.
  • 4Reshetikhin N Yu, Turaev V G. Ribbon graphs and their invariants derived from quantum groups[J]. Commun Math Phys, 1990,127(1) :1-26.
  • 5Zhu X. Finite representations of a quiver arising from string theory. Arxiv:AG/0507316.
  • 6Robles-Llana D, Rocek M. Quivers, quotients and duality. Arxiv:hep-th/0405230.
  • 7Zhang S, Zhang Y, Chen H X. Classification of pointed quivers Hopf algebras[J]. Arxiv:math/0410150.
  • 8Montgomery S. Hopf algebras and their actions on rings [M]. CBMS Reg Conf Series 82, Providenee,RI,1993.
  • 9Sweedler E: Hopf Algebras[M]. NewYork :W A Benjamin, Inc, 1969.
  • 10Nichols W. Bialgebras of type one[J]. Commun Alg, 1978, 6(15):1521-1552.

共引文献1

同被引文献3

  • 1Kassel C. Quantum groups [ M ]. New York: Springer, 1995.
  • 2Sweedler E. Hopf alegbras [ M ]. New York: Benjamin, 1969.
  • 3Chen H X. Irreducible representations of a class of quantum doubles [ J ]. J Algebra,2000,225 ( 1 ) : 391 - 409.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部