期刊文献+

基于神经网络的常微分方程数值计算方法 被引量:3

A Numerical Method for Solving Ordinary Differential Equations by Using Neural Network
下载PDF
导出
摘要 科学与工程应用中常用微分方程来建模,提出了一种基于余弦基神经网格的计算微分方程的新方法,其基本思想是以神经网络的输出来近似初值问题中的解析解.为保证算法的收敛性,提出并证明了神经网络算法的收敛性定理,为神经网络学习率的选择提供了依据.通过实例证明了该算法的有效性. Differential equations are used to model problems in science and engineering, most of these problems require the solution to an initial-value problem. A new method for solving initial-value problems in ordinary differential equations ( ODEs ) is proposed. The basic idea is to use the out-put of neural network to approximate to the solution of the initial-value problems in ODEs. The convergence theorem of neural networks algorithm is given and proved. The accurac and efficiency of the proposed method are validated by the simulation examples of'initial-value problems in ODE.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2007年第3期34-37,54,共5页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(50677014)
关键词 神经网络 收敛性 常微分方程 初值问题 neural network convergence theorem ordinary differential equation initial-value problem
  • 相关文献

参考文献5

  • 1Mathews John H 陈渝 周璐 译.数值方法(MATLAB版)[M].北京:电子工业出版社,2002..
  • 2蔡章生,张帆,蔡琦.常微分方程数值计算导数权重法[J].海军工程大学学报,2002,14(4):21-23. 被引量:1
  • 3VAN DEN BERG G B J.The phase plane for a class of fourth order differential equations[J].Differential Equations,2000,161:110-153.
  • 4周欣,刘伯安,石秉学.神经网络的空间分解方法求解热传导方程[J].清华大学学报(自然科学版),2005,45(1):130-132. 被引量:1
  • 5LIU B,JAMMES B.Solving ordinary different equations by neural netmork[A]//Proceeding of 13 European simulation multic confererue[C].Warscuv,Poland:Society for Computer Simulation International,1999.

二级参考文献8

  • 1Lee Hyuk. Neural algorithm for solving differential equations[J]. J Compt Phys, 1990, 91: 110-131.
  • 2Meade A J, Fernandez A A. The numerical solution of linear ordinary differential equations by feedforward neural networks [J]. Math Comput Modelling, 1994, 19(12):1 - 25.
  • 3Meade A J, Fernandez A A. Solution of nonlinear ordinary differential equations by feedforward neural networks [J].Math Comput Modelling, 1994, 20(9) : 19 - 44.
  • 4Lagaris I E, Likas A, Fotiadis D I. Artificial neural network methods in quantum mechanics [J]. Cornput Phys Cornrnun,1997, 104: 1-14.
  • 5LIU Bo-An, Jammes Bruno. Solving ordinary differential equations by neural network [A]. Proceeding of 13# european simulation multi-conference [C]. Warsaw, Poland..Society for Computer Simulation International, 1999.437-441.
  • 6Lagaris I E, Likas A, Fotiadis D I. Artificial neural networks for solving ordinary and partial differential equation[J]. IEEE Trans Neural Net'woks, 1998, 9(5) :987 - 1000.
  • 7ZHOU Xin, LIU Boan, Jammes Bruno. Solving steady-state partial derivative equation with neural network [A]. The 8th international conference on neural information processing[C]. Shanghai, China: Fudan Univ Press, 2001.1069 -1074.
  • 8Bronson R.现代微分方程的理论和问题 [M].北京:中国铁道出版社,1984.

共引文献1

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部