摘要
科学与工程应用中常用微分方程来建模,提出了一种基于余弦基神经网格的计算微分方程的新方法,其基本思想是以神经网络的输出来近似初值问题中的解析解.为保证算法的收敛性,提出并证明了神经网络算法的收敛性定理,为神经网络学习率的选择提供了依据.通过实例证明了该算法的有效性.
Differential equations are used to model problems in science and engineering, most of these problems require the solution to an initial-value problem. A new method for solving initial-value problems in ordinary differential equations ( ODEs ) is proposed. The basic idea is to use the out-put of neural network to approximate to the solution of the initial-value problems in ODEs. The convergence theorem of neural networks algorithm is given and proved. The accurac and efficiency of the proposed method are validated by the simulation examples of'initial-value problems in ODE.
出处
《湖南师范大学自然科学学报》
CAS
北大核心
2007年第3期34-37,54,共5页
Journal of Natural Science of Hunan Normal University
基金
国家自然科学基金资助项目(50677014)
关键词
神经网络
收敛性
常微分方程
初值问题
neural network
convergence theorem
ordinary differential equation
initial-value problem