摘要
利用Lery-Schauder不动点定理讨论了当m是一切自然数,G是一般的增算子时二阶边值问题((G(y))′+p(t)ym)′+q(t)f(t,y)=p′ym,0<t<1,y(0)=0,y(1)=b0>0解的存在性.
For all natural number m and increasing operator G, we consider the existence of solutions for a class of second-order boundary value problems(BVP) :
{((G(y))'+p(t)y^m)'+q(t)f(t,y)=p'y^m,0〈t〈1,
y(0)=0,y(1)=b0〉0
The proof of our main result is based on the Lery-Schauder continuation theorem.
出处
《徐州师范大学学报(自然科学版)》
CAS
2007年第3期14-18,共5页
Journal of Xuzhou Normal University(Natural Science Edition)
基金
Research supported by the National Natural Science Foundation of China(10671167)
Natural Science Foundation of the Educational Depart ment of Jiangsu Province(05KGD110225)
Foundation of Indigo Blue Project of the Educational Depart mentof Jiangsu Province(QL200502)