期刊文献+

加权线性支持向量分类机问题解的强二阶充分条件

Strong Second Order Sufficient Conditions Property for Linear Support Vector Classification
下载PDF
导出
摘要 支持向量机是数据挖掘的新方法。支持向量机所对应的优化问题解的二阶充分条件是研究其灵敏度分析的重要基础。很弱的假设对于作为其特例的线性可分支持向量机问题一定成立,线性可分支持向量机问题解一定具有强二阶充分条件的性质;在这个假设条件下,线性支持向量分类机问题的解具有二阶充分条件性质。研究表明线性支持向量分类机问题的解在很大程度上具有二阶充分条件的性质。 Support Vector Machines (SVM) is a new method for data mining. Second order sufficient condition is the basis for its optimal problem sensitivity analysis. Strong second order sufficient condition property of linear support vector classification is proposed. The hypothesis is so weak that linearly separable support vector classification meets it. The support vector classification solution is usually solved under such a hypothesis. In addition, another hypothesis is proposed for second order sufficient condition. The theories show that linear support vector classification satisfies second order sufficient condition property to a great degree.
出处 《北京联合大学学报》 CAS 2007年第3期15-19,共5页 Journal of Beijing Union University
基金 国家自然科学基金资助项目(10371131)
关键词 支持向量机 数据挖掘 支持向量分类机 二阶充分条件 强二阶充分条件 support vector machines data mining support vector classification second order sufficient condition strong second order sufficient condition
  • 相关文献

参考文献9

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Cristianini N, Shawe - Taylor J. An introduction to support vector machines[M]. Cambridge : Cambridge University Press, 2000.
  • 3Scholkopf B, Burges C J C, Smola A J. Advances in kernel methods- support vector learning[M]. Cambridge: MIT Press, 1999: 327 - 352.
  • 4Drucker H, Burges C J, Kaufman L, et al. support vector regression machines[C]// Mozer M, Jordan M, Petsche T,et al. Neural Information Processing Systems, Cambridge : MIT Press, 1997.
  • 5Scholkopf B, Smola A. Learning with kernels[ M ]. Cambridge : MIT Press, 2002.
  • 6Joachims T. Text categorization with support vector machines[C]//Meghneel Corr. Proc of the European Conf on Machine Learning. Dortmunc: University of Dormund, 1998:137-142.
  • 7Scholkopf B, Burges C J, Vapnik V. Extracting support data for a given task[C]//Fayyad U M, Uthurusamy R. Proceedings of First International Conference on Knowledge Discovery & Data Mining, German: AAAI Press, 1995:262-267.
  • 8Kwok J T Y. Support vector mixture for classification and regression problems[ M ] . Washington: IEEE Computer Society, 1998.
  • 9Smola A, Bartlett P, Scholkopf B, et al. Advances in large margin classifiers[M]. Cambridge: MIT Press, 2000.

共引文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部