期刊文献+

m-几乎交错环链图的性质 被引量:1

The properties of m-almost alternating link diagrams
下载PDF
导出
摘要 主要研究m-几乎交错环链图的性质,特别是m-几乎交错环链的投影图是dealternator连通且非约化的情况.给出了非约化交错环链K有x个A-方向和y个B-方向的isthums点时,Kauffman多项式的宽度.讨论了非约化几乎交错投影图中DRPT的类型及投影图沿DRPT分离时状态,在假定投影图中所有DRPT都为(A,B)型的基础上,讨论A-方向打开的dealternator点点数i相同与不同时,分3种情况研究了A-状态分支数与B-状态分支数之间的关系.从而讨论了Kauffman多项式的最高次幂幂指数与最低次幂幂指数的关系. The properties of projective diagrams of m-almost alternating links are discussed.Particularly,we deal with the case that the m-almost alternating projiections are dealternator connected and nonreduced.The breadth of the Kauffman polynomail is given when the projection is nonreduced alternating with x A-channel isthmus points and y B-channel isthmus points.The splitting state that m-almost alternating projiections are of the type of DRPT,and the projections are split along the DRPT,is studied.On the basis of all DRPT are(A,B) type in the projection,we dicuss the relation between SAL and SBL when the channel split is the same or different in three cases.
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2007年第3期257-261,共5页 Journal of Liaoning Normal University:Natural Science Edition
基金 辽宁省教育厅高等学校科学技术研究项目(05L208)
关键词 m-几乎交错环链 Kauffman多项式 dealternator连通 dealternator约化 almost alternating link Kauffman polynomial dealternator connected dealternator reduced
  • 相关文献

参考文献5

  • 1ALEXANDER J W.Topological invariants of knots and links[J].Trans Amer Math Soci,1923,30:275-306.
  • 2JONES F R.A polynomial invariant for knots via von Neumann algebras[J].Bull Amer Math Soci,1985,12(1):103-111.
  • 3ADAMS C C,BROCK J F,BUGBEE J,et al.Almost alternating links[J].Topology and its applications,1992,46:151.
  • 4KAUFFMAN L K.New invariants in the theory of knots[J].Amer Maths Monthly,1988,95(3):195-242.
  • 5KAuffman L.State models and the Jones polynomial[J].Topology,1987,26:395-407.

同被引文献8

  • 1刘彦佩.不可定向地图组合分类[J].沈阳师范大学学报(自然科学版),2004,22(4):241-247. 被引量:1
  • 2KAUFFMAN L H. Statistical mechanics and the Jones polynomial[M]. New York:Contemporary Math 78,1988.
  • 3JAEGER F. Spin models for link invariant[M] Cambridge:Cambridge University Press, 1995.
  • 4BAXTER R J. Exactly Solved Models in Statistical Mechanics[M]. New York: Academic Press, 1982.
  • 5ADAMS C C. The knot book[M]. New York:W H Freeman and Company, 2002.
  • 6BRYLAWSKI T H. The Tutte Grothendieck ring[J]. Algebra Universals, 1972,2 : 3?5-388.
  • 7TUTTE W T. A contribution to the theory of chromatic polynomials[J]. Canad J Math, 1954,6:80-91.
  • 8王艳芳.关于n元生成群的凯莱图(1)[J].辽宁师范大学学报(自然科学版),2002,25(3):329-331. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部