摘要
用反伪轨跟踪性的概念来刻画了Banach空间上的C1映射在一种弱化的双曲集即Steinlein-Walther双曲集上的一种稳定性,得到了广义的跟踪性引理.设H为一个Banach空间,φ:V→H为H的一个开子集V上的C1映射,如果T V为φ的Steinlein-Walther双曲集合,则φ在T上关于连续方法的类θs具有反伪轨跟踪性.
In this paper,a kind of stability of C^1 map on a weak kind of hyperbolic set is given,that is,Steinlein-Walther hyperbolic set,via the notion of inverse shadowing,obtain a generalized shadowing lemma.Let H be a Banach space,φ:V→H a C^1 map on a open subset V of H.Assume that T belong to V is a Steinlein-Walther hyperbolic set of φ.Then φ has the inverse shadowing property with respect to a continuous method θs on T.
出处
《辽宁师范大学学报(自然科学版)》
CAS
北大核心
2007年第3期265-267,共3页
Journal of Liaoning Normal University:Natural Science Edition