期刊文献+

黎曼流形上Fritz John必要最优性条件 被引量:1

Fritz John necessary optimality condition on Riemannian manifolds
下载PDF
导出
摘要 在黎曼流形上给出了Lipschitz函数的广义方向导数和广义梯度的概念,利用黎曼流形局部上与欧氏空间开集微分同胚的性质以及切映射和余切映射导出了广义梯度的性质和运算法则,证明了定义在黎曼流形上的函数取得极小值的必要条件是广义梯度包含零元素,并利用这些性质给出了黎曼流形上数学规划问题的Fritz John型最优性条件. The definitions of generalized directional derivative and generalized gradient of Lipschitz functions defined on Riemannian manifold are presented. Some properties of the directional derivative and gradient are proved by using tangent and cotangent mapping. The minimization necessary condition of nonsmooth Lipschitz functions is given. Moreover, Fritz John necessary optimality condition in mathematical programming is provided on Riemannian manifold.
出处 《辽宁师范大学学报(自然科学版)》 CAS 北大核心 2007年第3期268-272,共5页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(60574075)
关键词 黎曼流形 FritzJohn必要最优性条件 广义方向导数 广义梯度 Riemannian manifold Fritz John necessary optimality condition generalized directional derivative generalized gradient
  • 相关文献

参考文献9

  • 1CLARKE F H,LEDYAEV Y S,STEBB R J,et al.Nonsmooth analysis and Control Theyro[M].Grad Texts in math.Berlin:Springer,1998:69-96.
  • 2DUTTA J.Generalized derivatives and nonsmooth optimization,a finite dimensional tour[J].Top,2005,13:185-314.
  • 3AZAGRA D,FERRERA J.Proximal Calculus on Riemannian Manifolds[J].Mediterranean Journal of Mathematics,2005,2:437-450.
  • 4AZAGRA D,FERREAR J,MESAS F L.Nonsmooth analysis and Hamilton-Jacobi equations on smooth manifolds[J].Joural of Functional Analysis,2005,220:304-361.
  • 5LEDYAEV Y S,ZHU Q J.Techniques for Nonsmooth Analysis on Smooth Manifolds I:Local Problems[J].Lecture Notes in Control and Information Sciences,2004,301:283-297.
  • 6LEDYAEV Y S,ZHU Q J.Techniques for Nonsmooth Analysis on Smooth Manifolds Ⅱ:deformations and Flows[J].Lecture Notes in Control and Information Sciences,2004,301:299-311.
  • 7WALTER R.On the metric projection onto convex sets in Riemannian spaces[J].Arch Math,1974,ⅩⅩⅤ:91-98.
  • 8BOOTHBY.An Introduction to Differential Manifolds and Riemannian Geometry,second edition[M].Orlando:Academic Press,1988:10-150.
  • 9BORWEIN J M,ZHU Q J.Techniques of variational analysis[M].Berlin:Springer,2005:5-30.

同被引文献14

  • 1肖刚,刘三阳,尹小艳.微分流形上的最优化算法[J].西安电子科技大学学报,2007,34(3):472-475. 被引量:7
  • 2Udriste C. Convex Functions and Optimization Methods on Rie- mannian Manifolds [M]. Dordrecht: Kluwer Academic Puhli-shers, 1994.
  • 3Daniel A,Juan F, Femando Lopez-Mesas. Nonsmooth Analysis and Hamilton-Jacobi Equations on Riemannian Manifolds [J]. Journal of Functional Analysis, 2005,220(2) : 304-361.
  • 4Ledyaev Y S,Zhu Q J. Techniques for Nonsmooth Analysis on Smooth Manifolds: Local Problems [J]. Lecture Notes in Con- trol and Information Sciences, 2004,301 : 283-297.
  • 5Ledyaev Y S,Zhu Q J. Techniques for Nonsmooth Analysis on Smooth Manifolds6: Deformations and Flows [J]. Lecture Notes in Control and Information Sciences, 2004,301 = 299-311.
  • 6Daniel A, Juan K Proximal Calculus on Riemannian Manifolds [J]. Mediterranean Journal of Mathematics, 2005,2 (4) : 437-450.
  • 7Ledyacv Y S, Zhu Q J. Techniques for nonsmooth analysis on smooth manifolds i: local problems[J]. Lecture Notes in Control and Information Sciences, 2004,301 : 283-297.
  • 8Ledyacv Y S, Zhu Q J. Techniques for nonsmooth analysis on smooth manifolds ii: deformations and folws[J]. Lecture Notes in Control and Information Sciences, 2004,301 = 299-311.
  • 9Azagra D, Ferrera J, Lopez-Mesas F. Nonsmooth analysis and Hamilton-Jacobi equations on smooth manifolds [J]. Joural. of Functional Analysis, 2005,220: 304-361.
  • 10Azagra D, Ferrera J. Proximal calculus on Riemannian Manifolds [J]. Mediterranean Jorunal of Mathematics, 2005,2 : 437-450.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部