期刊文献+

法式tubular代数与仿射Kac-Moody代数

Canonical Tubular Algebras and Affine Kac-Moody Algebras
下载PDF
导出
摘要 彭联刚-肖杰等利用有限维遗传代数A的根范畴的Ringel-Hall李代数实现所有可对称化Kac-Moody代数,其中Ringel-Hall李代数的李乘不完全由Hall积提供.本文通过新方法实现仿射Kac-Moody代数,李代数L(A)1C/I的李乘完全由Hall积给出.对任意D4(1),E6(1),E7(1)或E8(1)型扩张Dynkin图Δ,在型为Δ的法式tubular代数A的退化合成李代数L(A)1C上构造它关于一个具体李理想I的商代数L(A)1C/I,证明商代数L(A)1C/I同构于对应的Δ型仿射Kac-Moody代数.这将有助于利用法式tubular代数的模范畴研究仿射Kac-Moody代数. Peng and Xiao had realized every complex symmetrizable Kac-Moody algebra as a Ringel-Hall Lie algebra of the socalled root category of a finite-dimensional hereditary algebra, where the Lie multiplication was not completely given by Hall multiplication. In new method of realizing the complex affine Kac-Moody algebra in this paper, the Lie bracket was completely given by the Hall multiplication. For each simply-laced extended Dynkin graph △ of type D4^(1) ,E6^(1) ,E7^(1) or E8^(1) ,the complex affine Kac-Moody algebra of type △ is realized as a quotient algebra of the complex degenerate composition Lie algebra L(A)1^C of a canonical tubular algebra A of type △ by some ideal I of L(A)1^C which is defined via the Hall algebra of A,and give an explicit form of L It would be of great benefit to study affine Kac-Moody algebras via the module categories of canonical tubular algebras.
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期598-604,共7页 Journal of Xiamen University:Natural Science
基金 福建省教育厅B类项目(JB05327)资助
关键词 法式tubular代数 仿射Kac-Moody代数 HALL代数 退化合成李代数 Canonical tubular algebra affine Kac-Moody algebra Hall algebra degenerate composition Lie algebra
  • 相关文献

参考文献9

  • 1Ringel C M.Hall algebras[J].Topics in Algebra,Banach Center Publications,1990,26:433-447,
  • 2Ringel C M.Lie algebras arising in representation theory[M].London:Math Soc Lec Notes,1992,168:248-291.
  • 3Ringel C M.Hall polynominals for the representation-finite hereditary algebras[J].Adv Math,1990,84(2):137-178.
  • 4Peng L,Xiao J.Root categories and simple Lie algebras[J].J Alge,1997,198:19-56.
  • 5Peng L,Xiao J.Triangulated categories and Kac-Moody algebras[J].Invent Math,2000,140:563-603.
  • 6Lin Y,Peng L.Elliptic Lie algebras and tubular algebras[J].Adv in Math,2005,196:487-530.
  • 7Saito K,Yoshii D.Extended affine root systems Ⅵ (Simple laced elliptic Lie algebras)[J].Publ RIMS Kyoto Univ,2000,36:385-421.
  • 8Ringel C M.Tame algebras,hereditary algebras and quadratic forms[M]//Lecture notes in mathematics 1099.Berlin:Springer-Verlag,1984.
  • 9Asashiba H.Domestic canonical and simple Lie algebra,arxir:705.0492.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部