期刊文献+

硫同位素分馏中的生物作用及其环境效应 被引量:16

BIOLOGICAL FUNCTION IN SULFUR ISOTOPE FRACTIONATION AND ENVIRONMENTAL EFFECT
下载PDF
导出
摘要 自然界中硫同位素组成变化范围较大(-65‰^+120‰)。许多环境过程可以引起硫同位素分馏,表生环境下微生物还原硫酸盐是最重要的硫同位素分馏过程。在≤50℃条件下,厌氧细菌使硫酸盐SO42-还原成H2S,后者与金属离子结合形成硫化物或直接从体系中逸出,这种硫循环过程是造成地球各层圈中硫的轻、重同位素变异的最主要原因。但生物成因的硫同位素分馏过程复杂,受诸多因素的限制。本文综述了由生物作用导致的硫同素分馏的发生机理和影响因素,以及生物硫循环所导致的环境效应。 Sulfur isotopic composition varies in a wide range in nature (-65‰ ~+120‰). Many environmental processes can cause sulfur isotope fractionation. While microbial sulfate reduction plays a key role in sulfur isotope fractionation in surface environment. Anaerobic bacteria reduced SO4^2- to H2S at less than or equal to 50 ℃, the latter was combined with metal ions to form sulfides or directly deviated from the system. This sulfur cycle is the most important reason for sulfur isotope variation in each sphere of the Earth. But the biogenic sulfur isotopic fractionation process was complicated by many factors. This paper reviewed the occurrence mechanism, affecting factors and the environment effect of biological function leading to sulfur isotope fractionation.
出处 《地球与环境》 CAS CSCD 北大核心 2007年第3期223-227,共5页 Earth and Environment
基金 国家重点基础研究发展计划(973)项目(2006CB403205)
关键词 δ34S 生物作用 硫酸盐还原 环境效应 综述 δ^34S biological function sulfate reduction environmental effect review
  • 相关文献

参考文献26

  • 1Krouse H R,Grinenko V A.Stable Isotopes in the Assessment of Natural and Anthropogenic Sulphur in the Environment[M].New York:John Wiley & Sons Ltd,1991:5-10
  • 2Mayer B,Prietzel J,Krouse H R.The influence of sulfur deposition rates on sulfate retention patterns and mechanisms in aerated forest soils[J].Appiled Geochemistry,2001,16:1003-1019
  • 3Novák M,Wieder R K,Schell W R.Sulfur during early diagenesis in Sphagnum peat:Insights from δ 34S ratio profiles in 210Pb-dated peat cores[J].Limnol.Oceanogr.,1994,39(5):1172-l185
  • 4Norman A L,Giesemann A,Krouse H R,et al.Sulphur isotope fractionation during sulphur mineralization:results of an incubation-extraction experiment with a Black Forest soil[J].Soil Biology & Biochemistry,2002,34:1425-1438
  • 5Novák M,Adamová M,Mili J.Sulfur metabolism in polluted Sphagnum peat bogs:A combined 34S-35S-210Pb study[J].Water,Air,and Soil Pollution,2003.3:181-200
  • 6Cross M M,Bottrell S H.Reconciling Experimentally Observed Sulphur Isotope Fractionation During Thermochemical Sulphate Reduction (TSR) with Field Data:A "Steady-State" Model of Isotopic Behaviour[J].Journal of Conference Abstracts,2000,5(2):325
  • 7Bottcher M E,Oelschlager B,Hopner T,et al.Sulfate reduction related to the early diagenetic degradation of organic matter and "black spot'"formation in tidal sand-ats of the German Wadden Sea (southern North Sea):stable isotope (13C,34S,18O) andother geochemical results[J].Org.Geochem.,1998,29(5):1517-1530
  • 8Habicht K S,Canfield D E,Rethmeier J.Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite[J].Geochimica et Cosmochimica Acta,1998,62(15):2585-2595
  • 9Fry B,Cox J,Gest H,et al.Discrimination between δ 34S and 32S during bacterial metabolism of inorganic sulfur compounds[J].J.Bacteriol.,1986,165:328-330
  • 10Novák M,Bottrell S H,Piechová E.Sulfur isotope inventories of atmospheric deposition,spruce forest floor and living Sphagnum along a NW-SE transect across Europe[J].Biogeochemistry,2001,53:23-50

二级参考文献13

共引文献52

同被引文献473

引证文献16

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部