期刊文献+

轴对称光束的Gouy相位 被引量:2

Gouy phase shift of the highly focused radially polarized beam
下载PDF
导出
摘要 研究了高数值孔径聚焦轴对称偏振光束产生的Gouy相位在理论和应用中的重大意义。用倾斜波近似方法可以得到Gouy相位的解析表达式,但计算较繁琐不易应用。等效焦区长度和等效波长两个概念的引入使Gouy相位的计算变得非常方便,可以近似将Gouy相位看作数值孔径NA的多项式拟合函数。利用该表达式推得的焦点附近不规则的相位分布和用数值计算方法得到的结果非常相近,也验证了倾斜波近似理论的正确性。 The Gouy phase shift in the focal field of high-NA focused radially polarized beam was investigated in detail. Analytical expression for the Gouy phase shift can be derived using tilted wave interpretation, which provides a reasonable prediction compared to vectorial diffraction numerical simulation. Using this method, irregular wave spacing in the vicinity of the focus can be revealed.
作者 陈昊 李永平
出处 《量子电子学报》 CAS CSCD 北大核心 2007年第5期539-542,共4页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金项目(10274078)
关键词 物理光学 Gouy相位 轴对称光束 高数值孔径聚焦 physical optics Gouy phase cylindrical polarized beam high NA focus
  • 相关文献

参考文献15

  • 1Gouy L G.Sur une propriete nouvelle[J].Acad C R.Sci.Paris.,1890,110:1251-1253.
  • 2Hariharan P,Robinson P A.The Gouy phase shift as a geometrical quantum effect[J].J.Mod.Opt.,1996,43(2):219-222.
  • 3Siegman A E.Lasers[M].University Science Books,Mill Valley,CA,1986.
  • 4Tritschler T,Hof K D,et al.Variation of the carrier-envelope phase of few-cycle laser pulses owing to the Gouy phase a solid-state-based measurement[J].Opt.Lett.,2005,30(7):753-755.
  • 5Arlt J,Padgett M J.Generation of a beam with a dark focus surrounded by regions of higher intensity:the optical bottle beam[J].Opt.Lett.,2000,25(4):191-193.
  • 6Whiting A I,Abouraddy A F,et al.Polarization-assisted transverse and axial optical superresolution[J].Optics Express,2003,11(15):1714-1723.
  • 7Zhan Q.Second-order tilted wave interpretation of the Gouy phase shift under high numerical aperture uniform illumination[J].Optics Communications,2004,242(4-6):351-360.
  • 8Youngworth K S,Brown T G.Focusing of high numerical aperture cylindrical-vector beams[J].Optics Express,2000,7(2):77-87.
  • 9Zhao Y,Zhan Q,et al.Creation and controlled delivery of three dimensional optically trapped chain[J].Opt.Lett.,2005,30(8):848-851.
  • 10Zhan Q,Leger J R.Microellipsometer with radial symmetry[J].Appl.Opt.,2002,41(22):4443-4450.

同被引文献28

  • 1向清,黄德修.钒酸钇晶体楔型光隔离器[J].中国激光,1996,23(3):225-228. 被引量:7
  • 2张艳丽,赵逸琼,詹其文,李永平.高数值孔径聚焦三维光链的研究[J].物理学报,2006,55(3):1253-1258. 被引量:10
  • 3Biss D P, Brown T G. Cylindrical vector beam focusing through a dielectric interface [J]. Opt. Express, 2001. 9(10): 490-497.
  • 4Torok P, Munro P R T. The use of Gauss-Laguerre vector beams in STED microscopy [J]. Opt. Express, 2004, 12(15): 3605-3617.
  • 5Greene P L, Hall D G. Diffraction characteristics of the azimuthal Bessel-Gauss beam [J]. J. Opt. Soc. Am. A, 1996, 13(5): 962-966.
  • 6Greene P L, Hall D G. Properties and diffraction of vector Bessel-Gauss beams [J]. J. Opt. Soc. Am. A, 1998, 15(12): 3020-3027.
  • 7Sheppard C J R, Matthews H J. Imaging in a high aperture optical systems [J]. J. Opt. Soc. Am. A, 1987, 4(8): 1354-1360.
  • 8Biss D P, Brown T G. Primary aberrations in focused radially polarized vortex beams [J]. Opt. Express, 2004, 12(3): 384-393.
  • 9Jordan R H, et al. Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution [J]. Opt. Left., 1994, 19(7): 427-429.
  • 10Kant R. An analytical solution of vector diffraction for focusing optical systems with Seidel aberrations I. Spherical aberration, curvature of field, and distortion [J]. J. Mod. Opt., 1993, 40(11): 2293-2310.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部