期刊文献+

利用同质缓冲层溅射生长c轴择优取向氮化铝薄膜 被引量:1

Sputtering growth of preferential c-axis-oriented aluminum nitride film using homogeneous buffer layer
下载PDF
导出
摘要 采用射频反应磁控溅射技术,利用低温低功率下生长的氮化铝(AlN)作为缓冲层,在铟锡复合氧化物(ITO)玻璃衬底上制备出具有良好c轴择优取向的多晶AlN薄膜.采用X射线衍射仪(XRD)、原子力显微镜(AFM)和场发射扫描电子显微镜(FESEM)研究了缓冲层对薄膜结晶特性和表面形貌的影响.结果表明,该缓冲层在提高AlN薄膜结晶质量的同时,薄膜的表面粗糙度由19.1 nm减小到2.5 nm,使薄膜表面更为平滑、致密.剖面扫描电子显微镜(SEM)照片显示AlN晶粒呈高度一致的柱状生长体制.通过分析样品的透射光谱,计算得到AlN薄膜的折射率和消光系数分别为2.018 7和0.007 7. Polycrystalline aluminum nitride (AlN) thin film with c-axis preferred orientation was deposited on indium tin oxide (ITO) glass substrate by reactive radio frequency (RF) magnetron sputtering, which introduced a low temperature AlN interlayer as buffer layer. The deposited films were characterized by X- ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microcopy (FESEM) to investigate the influence of the buffer layer on the crystalline quality and surface morphology. The results indicated that the introduction of the buffer layer tended to improve the crystallization of AlN films and meanwhile decrease the surface roughness from 19. 1 nm to 2. 5 nm, leading to a dense and smooth surface texture. The cross-sectional scanning electron microcopy (SEM) photographs of AlN films showed a high degree of alignment for the columnar structure. Furthermore, transmission spectra were studied to obtain the refractive index (2. 018 7) and the extinction coefficient (0.007 7) of the deposited films.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第9期1512-1515,1531,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60478043) 浙江省自然科学基金资助项目(Y105536)
关键词 ALN薄膜 反应磁控溅射 缓冲层 择优取向 aluminum nitride (AlN) film reactive magnetron sputtering, buffer layer, preferred orientation
  • 相关文献

参考文献13

  • 1STRITE S,MORKOC H.GaN,AlN,and InN:a review[J].Journal of Vacuum Science Technology B,1992,10(4):1237-1266.
  • 2STEVENS K S,KINNIBURGE M,SCHWARTZMAN A F,et al.Demonstration of a silicon field-effect transistor using AlN as the gate dielectric[J].Applied Physics Letters,1995,66(23):3179-3181.
  • 3DENG Y Z,KONG Y C,ZHENG Y D,et al.Study on strain and piezoelectric polarization of AlN films grown on Si[J].Journal of Vacuum Science Technology A,2005,23(4):628-630.
  • 4YOSHIDA S,MISAWA S,FUJII Y,et al.Reactive molecular beam epitaxy of aluminum nitride[J].Journal of Vacuum Science Technology,1979,16(8):990-993.
  • 5VISPUTE R D,NARAYAN J,WU H,et al.Epitaxial growth of AlN thin films on silicon (111) substrates by pulsed laser deposition[J].Journal of Applied Physics,1995,77(9):4724-4728.
  • 6ZHANG J X,CHEN Y Z,CHENG H,et al.Interface study of AlN grown on Si substrates by radio-frequency magnetron reactive sputtering[J].Thin Solid Films,2005,471(1/2):336-341.
  • 7SHIOSAKI T,YAMAMOTO T,ODA T,et al.Low-temperature growth of piezoelectric AlN film by RF reactive planar magnetron sputtering[J].Applied Physics Letters,1980,36(8):643-645.
  • 8NAKAJIMA A,FURUKAWA Y,KOGA S,et al.Growth of high-quality AlN with low pit density on SiC substrates[J].Journal of Crystal Growth,2004,265(3/4):351-356.
  • 9MALENGREAU F,HAGEGE S,SPORKEN R,et al.UHV reactive sputtering of AlN (0001) single crystals on Si (111) at high temperature by a two-step growth method[J].Journal of European Ceramic Society,1997,17:1807-1811.
  • 10NARAYAN J,DOVIDENKO K,SHARMA A K,et al.Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures[J].Journal of Applied Physics,1998,84(5):2597-2601.

同被引文献19

  • 1吴贵斌,叶志镇,赵星,刘国军,赵炳辉.超高真空CVD选择性外延锗硅及其电学特性[J].浙江大学学报(工学版),2006,40(12):2041-2043. 被引量:2
  • 2MIZUNO T, TAKAGI S, SUGIYAMA N, et al. Elec- tron and hole mobility enhancement in strained-Si MOS- FET-s on SiGe-on-insulator substrates fabricated by SI- MOX technology [J]. IEEE Electron Device Letter, 2000, 21 (5): 230-232.
  • 3LIU W, ASHEGHI M. Thermal modeling of self-heat- ing in strained silicon MOSFETs [C] // Proceeding of IEEE ITHERM Conference. [S. l. ]: IEEE, 2004: 605.
  • 4BRESSON N, CRISTOLOVEANU S, MAZURE C, et al. Integration of buried insulators with high thermal conductivity in SOI MOSFETs: thermal properties and short channel effects [J]. Solid-State Electronics, 2005, 49(9) : 1522 - 1528.
  • 5KUMAR M J, SIVA M. The ground plane in buried oxide for controlling short-channel effects in nano scale SOI MOSFETs [J]. IEEE Transactions on Electron Devices, 2008, 55(6) : 1554 - 1557.
  • 6XIONG W, RAMKUMAR K, JANG S J, et al. Self aligned ground-plane FD SOI MOSFET [C]// Proceed- ing of IEEE International SOI Conference. [S. l. ]: IEEE, 2002:23 - 24.
  • 7YANAGI S, NAKAKUBO A, OMURA Y. Proposal of partial-ground-plane (PGP) silicon-on-insulator (SOI) MOSFET for deep sub-0.1-μm channel regime [J]. IEEE Electron Device, 2001, 22(6): 278- 280.
  • 8VIVEK V, NAWAL S, KUMAR M J. Compact analyt- ical threshold-voltage model of nanoscate fully depleted strained-Si on silicon germanium-on insulator (SGOI) MOSFETs [J]. IEEE Transactions on Electron Devices, 2007, 54(3): 554-562.
  • 9MASETTI G, SEVERI M, SOLMI S. Modeling of car- rier mobility against carrier concentration in Arsenic-, Phosphorus-, and Boron-doped silicon [J]. IEEE Trans- actions on Electron Devices, 1983, 30(7) : 764 - 769.
  • 10LOMBARDI C, MANZINI S, SAPORTO A, et al. Physically based mobility model for numerical simula- tion of nonplanar devices [J]. IEEE Transactions on Computer-Aided Design, 1988, 7(11): 1164- 1171.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部