期刊文献+

三水源新安江模型参数不确定性分析PAM算法 被引量:5

A Parallel Adaptive Metropolis Algorithm for Uncertainty Assessment of Xinanjiang Model Parameters
下载PDF
导出
摘要 针对水文模型参数不确定性分析常用方法收敛速度缓慢,容易陷入参数空间局部最优区域等问题,提出了PAM(parallel adaptive metropolis)算法;对三水源新安江模型参数不确定性进行分析研究。实例研究表明显著提高了计算速度和求解质量,参数后验分布结果为区间预报提供了条件。 Markov Chain Monte Carlo (MCMC) methods, which are popular for estimating parameters uncertainty of hydrologic models, generally converge slowly, and are easy to get stuck in a local optimized region in the parametric space during uncertainty assessment of hydrologic model parameters. In this paper the Parallel Adaptive Metropolis (PAM) algorithm is presented to access the parameters uncertainty of hydrologic models. The PAM algorithm provides an adaptive MCMC sampler to estimate the posterior probability distribution of parameters under Bayesian framework. The performance of the PAM algorithm is greatly improved in the manner of parallel computing. The PAM algorithm is applied to assess the parameter uncertainty of Xinanjiang model using hydrologic data from Shuangpai Reservoir. The case study demonstrates that there is considerable uncertainty about the Xinanjiang model parameters. The hydrograph prediction uncertainty ranges associated with the posterior distribution of the parameters estimates can bracket the observed flows well, but not large, indicating that the method is feasible.
出处 《中国工程科学》 2007年第9期47-51,共5页 Strategic Study of CAE
基金 国家自然科学基金(50479055)
关键词 水文模型 参数不确定性分析 MCMC PAM 并行计算 hydrologic model uncertainty assessment MCMC PAM parallel computing
  • 相关文献

参考文献7

  • 1Beven K J,Binley A.The future of distributed models:Model calibration and uncertainty prediction[J].Hydrological Processes,1992,6(3):279 -298.
  • 2Thiemann M,Trosset M,G upta H,et al.Bayesian recursive parameter estimation for hydrologic models[J].Water Resources Research,2001,37(10):2521 -2535
  • 3Bates B C,Campbell E P.A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall -runoff modeling[J].Water Resources Research,2001,37(4):937-948.
  • 4Vrugt J A,Gupta H V,Bouten W,et al.A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters[J].Water Resources Research,2003,39 (8):Art.No.1201.
  • 5Marshall L,Nott D,Sharma A.A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling[J].Water Resources Research,2004,40 (2):Art.No.W02501.
  • 6Haario H,Saksman E,Tamminen J.An adaptive metropolis algorithm[J].Bemoulli,2001,7(2):223 -242.
  • 7Gelman A,Rubin D B.Inference from iterative simulation using multiple sequences[J].Statistical Science,1992,7 (4),457-472.

同被引文献95

引证文献5

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部