摘要
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment. Non-mycorrhizal and zero-P addition controls were included. Plant biomass and concentrations and uptake of As, P, and other nutrients, AM colonization, root lengths, and hyphal length densities were determined. The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium. Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments, but shoot and root biomass of AM plants was depressed by P application. AM fungal inoculation decreased shoot As concentrations when no P was added, and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition, respectively. Shoot and root uptake of P, Mn, Cu, and Zn increased, but shoot Fe uptake decreased by 44.6%, with inoculation, when P was added. P addition reduced shoot P, Fe, Mn, Cu, and Zn uptake of AM plants, but increased root Fe and Mn uptake of the nonmycorrhizal ones. AM colonization therefore appeared to enhance plant tolerance to As in low P soil, and have some potential for the phytostabilization of As-contaminated soil, however, P application may introduce additional environmental risk by increasing soil As mobility.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment. Non-mycorrhizal and zero-P addition controls were included. Plant biomass and concentrations and uptake of As, P, and other nutrients, AM colonization, root lengths, and hyphal length densities were determined. The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium. Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments, but shoot and root biomass of AM plants was depressed by P application. AM fungal inoculation decreased shoot As concentrations when no P was added, and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition, respectively. Shoot and root uptake of P, Mn, Cu, and Zn increased, but shoot Fe uptake decreased by 44.6%, with inoculation, when P was added. P addition reduced shoot P, Fe, Mn, Cu, and Zn uptake of AM plants, but increased root Fe and Mn uptake of the nonmycorrhizal ones. AM colonization therefore appeared to enhance plant tolerance to As in low P soil, and have some potential for the phytostabilization of As-contaminated soil, however, P application may introduce additional environmental risk by increasing soil As mobility.
基金
Project supported by the National Natural Science Foundation of China (No.40401031)