期刊文献+

基于径向基概率神经网络的高压加热器故障诊断 被引量:6

Fault diagnosis of high-pressure heater system based on radial basis probabilistic neural network
下载PDF
导出
摘要 应用径向基概率神经网络实现高压加热器的故障诊断。介绍了RBPNN网络的结构和学习算法;总结了高加的故障集、征兆集和故障特征数据。在Matlab环境下给出了高加故障诊断的具体实例,表明该方法是一种可行有效的高加故障诊断方法。 A method based on radial basis probabilistic neural network (RBPNN) was applied to realize fault diagnosis of the high-pressure heaters in a power plant. The structure of the RBPNN and its learning algorithm was discussed in this paper. The fault sets, fault symptoms and fault feature data of the high-pressure heater system of a 300 MW power generating unit was summarized. Fault diagnosis examples of the high-pressure heater system under the environment of Matlab indicate that the method is effective and feasible.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2007年第5期81-84,共4页 Journal of North China Electric Power University:Natural Science Edition
基金 华北电力大学博士学位教师基金资助项目(20041209)
关键词 高压加热器 故障诊断 径向基概率神经网络 MATLAB high-pressure heater fault diagnosis Radial Basis Pmbabilistic Neural Network MATLAB
  • 相关文献

参考文献4

二级参考文献13

共引文献41

同被引文献69

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部