期刊文献+

一种基于主曲线的步态识别方法 被引量:3

An Automatic Human Gait Recognition Based on Principal Curves
下载PDF
导出
摘要 提出将主曲线作为一种新的步态特征分析和分类方法.主曲线特征分析单独分析每类样本的特征,形成直接对各类样本特征及其趋势的低维流形描述,保留了数据集的内在拓扑结构.首先对步态序列时空分析,在低的代价下表达步态运动的时空变化模式;然后,对步态特征进行主曲线分析;最后,用针对该分析方法定义的新相似性度量和分类规则进行了步态的训练和识别.在常用数据库上的测试结果表明,本方法行之有效,主曲线具有很好的实用性. Present a method for human model-flee gait recognition using principal curves analysis based on silhouette in computer vision sequences. Different from the traditional statistical analysis methods, principal curve analysis seeks lower-dimensional manifolds for every class respectively, and forms the nonlinear summarization of the sample features and directions for each class. This raethod can reserve the inherent structure of data.Firstly,we separated objects from background by background subtraction and extracted the contour of silhouettes and represented the spafio-temporal features. Secondly, we used principal curves analysis to analyze gait features. Firnally, the new comparability measurement and classification rule were used to train and test gait sequences of persons. The performance of our approach was tested using different gait databases. Recognition results demonstrate that our method has encouraged recognition performance,and principal curves are an effective method in analyzing nonlinear gait data.
作者 苏菡 黄凤岗
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第9期1685-1690,共6页 Acta Electronica Sinica
基金 四川省教育厅重点项目(No.2006A066) 四川省教育厅重点课题基金(No.2003A085) 四川省科技厅应用基础研究项目(No.04JY029-051-1)
关键词 生物特征技术 步态识别 主曲线 时空分析 分类规则 biometrics gait recognition principal curves spatiotemporal analysis classification rules
  • 相关文献

参考文献21

  • 1王亮,胡卫明,谭铁牛.基于步态的身份识别[J].计算机学报,2003,26(3):353-360. 被引量:158
  • 2MURARY M P, DROUGHT A B, et al. Walking pattern of movement [J]. Ametican Journal Medicine, 1967,46(1) : 290 - 332.
  • 3NIYOGI S,ADELSON E.Analyzing and recognizing walking figuresin XYT[A]. Proceedings of 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Washington:IEEE Computer Society Press, 1994.469-474.
  • 4CUNADO D,NIXON M S,et al. Gait extraction and description by evidence-gathering[J]. Computer Vision Image Understanding,2003,90(1):1 - 41.
  • 5YAM C Y, NIXON M S, et al. Automated person recognition by walking and running via model-based approaches[J]. Pattern Recognition,2004,37(5): 1057 - 1072.
  • 6MURASE H, SAKAI R. Moving object recognition in eigenspace representation: gait analysis and lip reading[J]. Pattern Recognition Letters,1996,17:155- 162.
  • 7WANG L, TAN T N,et al. Automatic gait recognition based on statistical shape analysis [J]. IEEE Transaction on Image Processing,2003,12(9): 1120-1131.
  • 8WANG L, TAN T N, et al. Silhouette analysis-based gait recognition for human identification [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003,25(12):1505 - 1528.
  • 9LEF L, GRIMSON W. Gait analysis for recognition and classification[A]. Proceedings of 5th IEEE International Conference on Automatic Face and Gesture Recognition[C].New York: ACM Press,2002. 155 - 162.
  • 10HAYFRON-ACQUAH,J, NIXON M S,et al. Automatic gait recognition by symmetry analysis[J]. Pattern Recognition Letters,2003,24:2175 - 2183.

二级参考文献78

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2张天序,电子学报,1987年,15卷,3期,79页
  • 3Salah A A,Alpaydin E,Akarun L.A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition[J].Pattern Analysis and Machine Intelligence.IEEE Transactions on,2002,24(3):789-796.
  • 4Hastie T.Principal Curves and Surfaces[R].Laboratory for Computational Statistics,Stanford University,Department of Statistics:Technical Report 11,1984.
  • 5Banfield J D,Raftery A E.Ice floe identification in satellite images using mathematical morphology and clustering about principal curves[J].Journal of the American Statistical Association,1992,87(417):7-16.
  • 6Kegl B,Krzyzak A,et al.A polygonal Line algorithm for constructing principal curves[A].Proceedings of Neural Information Processing System[C].Denver Colorado,USA:1999.501-507.
  • 7Verbeek JJ,Vlassis N,Krose B.A k-segments algorithm for finding principal curve[R].Computer Science of Institute,University of Amsterdam,IAS-UVA-00-11,2000.
  • 8Delicado P.Another look at principal curves and surfaces[J].Journal of Multivariate Analysis,2001,77(1):84-116.
  • 9Kegl B,Krzyzak A,et al.Piecewise linear skeletonization using principal curves[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(1):59-74.
  • 10S W LEE,L Lam,C Y Suen.A systematic evaluation of skeletonization algorithms[J].International Journal of Pattern Recognition and Artificial Intelligence,1993,7(5):1203-1225.

共引文献238

同被引文献14

  • 1张红云,苗夺谦,张东星.基于主曲线的脱机手写数字结构特征分析及选取[J].计算机研究与发展,2005,42(8):1344-1349. 被引量:10
  • 2Ailisto Heikki, Lindholm Mikko,Jani Mantyjarvi, et al. Identifying People from Gait Pattern with Aecelerometers: Proceedings of SPIE Volume 5779 Biometric Technology for Human Identification Ⅱ[C]. Bellingharn : SPIE, 2005 : 7 - 14.
  • 3STMicroelectronics. LIS3LV02DQ Data Sheet, 2005.
  • 4NEC Electronics. μPD78F0547D Data Sheet, 2005.
  • 5Nordic Semiconductor. nRF2401AG Data Sheet, 2004.
  • 6Ailisto H,Lindholm M,Mantyjarvi J,et al. Identifying users of portable devices from gait pattern with accelerometers [ A ]. IEEE International Conference on Acoustics, Speech, and Signal Processing[ C ]. Philadelphia: IEEE Signal Processing Society, 2005.Ⅱ. 973 - 976.
  • 7Gafurov Davrondzhon, Helkala Kirsi, Sondrol Torkjel. Gait recognition using acceleration from MEMS[ A]. Proceedings of the 1^st Intemational Conference on Availability, Reliability and Security[ C]. Vienna: Imtitute of Electrical and Electronics Engineers Computer Society,2006.432 - 437.
  • 8Mathie M J,CeUer B G,Lovell Nigel H,et al. Classification of basic daily movements using a lriaxial accelerometer[ J] .Medical and Biological Engineering and Computing, 2004, 42 ( 5 ) : 679 - 687.
  • 9D M Karantonis,M R Narayanan, M Mathie, et al. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring[ J]. IEEE Transactions on Information Technology in Biomedicine, 2006, 10( 1 ) : 156 - 167.
  • 10N Ravi,N Dandekar,P Mysore, et al.Activity recognition from accelerometer data[ A ]. Proceedings of the 20^th National Conference on Artificial Intelligence[ C ]. Pittsburgh: American Association for Artificial Intelligence,2005. V3. 1541 - 1546.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部